消息
×
loading..
A Comprehensive Empirical Study of Bugs in Open-Source Federated Learning Frameworks
2023-10-06
状态已发表
摘要

Federated learning (FL) is a distributed machine learning (ML) paradigm, allowing multiple clients to collaboratively train shared machine learning (ML) models without exposing clients' data privacy. It has gained substantial popularity in recent years, especially since the enforcement of data protection laws and regulations in many countries. To foster the application of FL, a variety of FL frameworks have been proposed, allowing non-experts to easily train ML models. As a result, understanding bugs in FL frameworks is critical for facilitating the development of better FL frameworks and potentially encouraging the development of bug detection, localization and repair tools. Thus, we conduct the first empirical study to comprehensively collect, taxonomize, and characterize bugs in FL frameworks. Specifically, we manually collect and classify 1,119 bugs from all the 676 closed issues and 514 merged pull requests in 17 popular and representative open-source FL frameworks on GitHub. We propose a classification of those bugs into 12 bug symptoms, 12 root causes, and 18 fix patterns. We also study their correlations and distributions on 23 functionalities. We identify nine major findings from our study, discuss their implications and future research directions based on our findings.

DOIarXiv:2308.05014
相关网址查看原文
出处Arxiv
WOS记录号PPRN:74794569
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348017
专题信息科学与技术学院_PI研究组_何静竹组
信息科学与技术学院_硕士生
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, 10019, Beijing, Peoples R China
3.Univ Chinese Acad Sci, 10019, Beijing, Peoples R China
4.Tianjin Univ, Tianjin, Peoples R China
5.Nankai Univ, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
Shao, Weijie,Gao, Yuyang,Song, Fu,et al. A Comprehensive Empirical Study of Bugs in Open-Source Federated Learning Frameworks. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shao, Weijie]的文章
[Gao, Yuyang]的文章
[Song, Fu]的文章
百度学术
百度学术中相似的文章
[Shao, Weijie]的文章
[Gao, Yuyang]的文章
[Song, Fu]的文章
必应学术
必应学术中相似的文章
[Shao, Weijie]的文章
[Gao, Yuyang]的文章
[Song, Fu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。