ShanghaiTech University Knowledge Management System
NeuralGiga: Neural Giga-Image Representation with Anti-Aliasing and Continuous Viewing | |
2023-10-19 | |
会议录名称 | IECON 2023- 49TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY |
ISSN | 1553-572X |
发表状态 | 已发表 |
DOI | 10.1109/IECON51785.2023.10312348 |
摘要 | A gigapixel image consists of billions of pixels with color information to record fine details of the scene, leading to tremendous data overload for storage and display. Recent advances of gigapixel imaging still suffer from large storage size, I/O overhead or spatial aliasing for achieving real-time rendering especially during zoom-in or zoom-out. To fill this gap, in this paper, we propose NeuralGiga, a novel neural representation of gigapixel images with an effective neural rendering scheme. NeuralGiga implicitly encodes the entire image into a light-weight network which maps pixel coordinates into RGB values with efficient storage overload. In our novel neural rendering network, to enable high-quality giga-image regression with anti-aliasing and continuous viewing effect, we introduce a Spectrum Multi-Layer Perceptron (MLP) design and a Gaussian-based Integrated Random Fourier Feature Mapping (GIRFFM) scheme. Extensive experiments on various scenarios illustrate the effectiveness of our approach to achieve high-quality neural giga-image representation for both storage and display. © 2023 IEEE. |
关键词 | Image Processing |
会议名称 | 49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023 |
会议地点 | Singapore, Singapore |
会议日期 | 16-19 Oct. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20235015211740 |
EI主题词 | Pixels |
EISSN | 2577-1647 |
EI分类号 | 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347927 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_马月昕 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China; 2.University of Chinese Academy of Sciences, China; 3.Shanghai Institute of Microsystem and Information Technology, China; 4.Ku Leuven, Belgium |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Luo, Xi,Li, Yuwei,Wu, Minye,et al. NeuralGiga: Neural Giga-Image Representation with Anti-Aliasing and Continuous Viewing[C]:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Luo, Xi]的文章 |
[Li, Yuwei]的文章 |
[Wu, Minye]的文章 |
百度学术 |
百度学术中相似的文章 |
[Luo, Xi]的文章 |
[Li, Yuwei]的文章 |
[Wu, Minye]的文章 |
必应学术 |
必应学术中相似的文章 |
[Luo, Xi]的文章 |
[Li, Yuwei]的文章 |
[Wu, Minye]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。