ShanghaiTech University Knowledge Management System
Robust Lifelong Indoor LiDAR Localization Using the Area Graph | |
2024-01 | |
发表期刊 | IEEE ROBOTICS AND AUTOMATION LETTERS (IF:4.6[JCR-2023],5.5[5-Year]) |
ISSN | 2377-3774 |
EISSN | 2377-3766 |
卷号 | 9期号:1页码:531-538 |
发表状态 | 已发表 |
DOI | 10.1109/LRA.2023.3334158 |
摘要 | Lifelong indoor localization in a given map is the basis for navigation of autonomous mobile robots. In this letter, we address the problem of robust localization in cluttered indoor environments like office spaces and corridors using 3D LiDAR point clouds in a given Area Graph, which is a hierarchical, topometric semantic map representation that uses polygons to demark areas such as rooms, corridors or buildings. This representation is very compact, can represent different floors of buildings through its hierarchy and provides semantic information that helps with localization, like poses of doors and glass. In contrast to this, commonly used map representations, such as occupancy grid maps or point clouds, lack these features and require frequent updates in response to environmental changes (e.g. moved furniture), unlike our approach, AGLoc, which matches against lifelong architectural features such as walls and doors. For that we apply filtering to remove clutter from the 3D input point cloud and then employ further scoring and weight functions for localization. Given a broad initial guess from WiFi and barometer localization, our experiments show that our global localization and the weighted point to line ICP pose tracking perform very well, even when compared to localization and SLAM algorithms that use the current, feature-rich cluttered map for localization. © 2016 IEEE. |
关键词 | Autonomous vehicle navigation localization semantic scene understanding |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815120781 |
EI主题词 | Semantics |
EI分类号 | 402.2 Public Buildings ; 716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment ; 722.2 Computer Peripheral Equipment ; 731.5 Robotics ; 741.3 Optical Devices and Systems |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347904 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Sören Schwertfeger组 |
通讯作者 | Xie, Fujing |
作者单位 | Ministry of Education, Key Laboratory of Intelligent Perception and Human-Machine Collaboration, ShanghaiTech University, Shanghai; 200000, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xie, Fujing,Schwertfeger, Sören. Robust Lifelong Indoor LiDAR Localization Using the Area Graph[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2024,9(1):531-538. |
APA | Xie, Fujing,&Schwertfeger, Sören.(2024).Robust Lifelong Indoor LiDAR Localization Using the Area Graph.IEEE ROBOTICS AND AUTOMATION LETTERS,9(1),531-538. |
MLA | Xie, Fujing,et al."Robust Lifelong Indoor LiDAR Localization Using the Area Graph".IEEE ROBOTICS AND AUTOMATION LETTERS 9.1(2024):531-538. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Sören]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Sören]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xie, Fujing]的文章 |
[Schwertfeger, Sören]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。