Multiplicative Sparse Tensor Factorization for Multi-View Multi-Task Learning
2023-09-28
会议录名称FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS
ISSN0922-6389
卷号372
页码2560-2567
DOI10.3233/FAIA230561
摘要Multi-View Multi-Task Learning (MVMTL) aims to make predictions on dual-heterogeneous data. Such data contains features from multiple views, and multiple tasks in the data are related with each other through common views. Existing MVMTL methods usually face two major challenges: 1) to save the predictive information from full-order interactions between views efficiently. 2) to learn a parsimonious and highly interpretable model such that the target is related to the features through a subset of interactions. To deal with the challenges, we propose a novel MVMTL method based on multiplicative sparse tensor factorization. For 1), we represent full-order interactions between views as a tensor, that enables to capture the complex correlations in dual-heterogeneous data by a concise model. For 2), we decompose the interaction tensor into a product of two components: one being shared with all tasks and the other being specific to individual tasks. Moreover, tensor factorization is applied to control the model complexity and learn a consensus latent representation shared by multiple tasks. Theoretical analysis reveals the equivalence between our method and a family of models with a joint but more general form of regularizers. Experiments on both synthetic and real-world datasets prove its effectiveness. © 2023 The Authors.
会议录编者/会议主办者Amazon Alexa ; APTIV ; et al. ; Hewlett Packard ; IDEAS ; Software Force
关键词Factorization Learning systems Machine learning Heterogeneous data Learn+ Learning methods Multi-views Multiple tasks Multiple views Multitask learning Predictive information Sparse tensors Tensor factorization
会议名称26th European Conference on Artificial Intelligence, ECAI 2023
会议地点Krakow, Poland
会议日期September 30, 2023 - October 4, 2023
URL查看原文
收录类别EI
语种英语
出版者IOS Press BV
EI入藏号20234515035269
EI主题词Tensors
EISSN1879-8314
EI分类号723.4 Artificial Intelligence ; 921 Mathematics ; 921.1 Algebra
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346434
专题信息科学与技术学院_PI研究组_孙露组
信息科学与技术学院_硕士生
作者单位
1.ShanghaiTech University, China;
2.Kyoto University, Japan
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Xinyi,Sun, Lu,Nguyen, Canh Hao,et al. Multiplicative Sparse Tensor Factorization for Multi-View Multi-Task Learning[C]//Amazon Alexa, APTIV, et al., Hewlett Packard, IDEAS, Software Force:IOS Press BV,2023:2560-2567.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xinyi]的文章
[Sun, Lu]的文章
[Nguyen, Canh Hao]的文章
百度学术
百度学术中相似的文章
[Wang, Xinyi]的文章
[Sun, Lu]的文章
[Nguyen, Canh Hao]的文章
必应学术
必应学术中相似的文章
[Wang, Xinyi]的文章
[Sun, Lu]的文章
[Nguyen, Canh Hao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3233@FAIA230561.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。