MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation
2023
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14295 LNCS
页码94-104
发表状态已发表
DOI10.1007/978-3-031-45350-2_8
摘要

Breast cancer is a major health issue, causing millions of deaths each year worldwide. Magnetic Resonance Imaging (MRI) is an effective tool for detecting and diagnosing breast tumors, with various MRI sequences providing comprehensive information on tumor morphology. However, existing methods for segmenting tumors from multi-parametric MRI have limitations, including the lack of considering inter-modality relationships and exploring task-informative modalities. To address these limitations, we propose the Modality-Specific Information Disentanglement (MoSID) framework, which extracts both intra- and inter-modality attention maps as prior knowledge to guide tumor segmentation from multi-parametric MRI. This is achieved by disentangling modality-specific information that provides complementary clues to the segmentation task and generating modality-specific attention maps in a synthesis manner. The modality-specific attention maps are further used to guide modality selection and inter-modality evaluation. Experiment results on a large breast dataset show that the MoSID achieves superior performance over other state-of-the-art multi-modality segmentation methods, and works reasonably well even with missing modalities. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Diagnosis Image segmentation Large dataset Medical imaging Tumors Breast Cancer Breast tumour Disentanglement Effective tool Health issues Imaging sequence Intermodality Segmentation Specific information Tumor segmentation
会议名称2nd International Workshop on Cancer Prevention through early detecTion, CaPTion 2023
会议地点Vancover, BC, Canada
会议日期October 12, 2023 - October 12, 2023
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234515037248
EI主题词Magnetic resonance imaging
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346421
专题生物医学工程学院
信息科学与技术学院_PI研究组_高飞组
生命科学与技术学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_崔智铭组
通讯作者Shen, Dinggang
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai; 201210, China;
2.School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou; 510515, China;
3.School of Electrical and Information Engineering, The University of Sydney, Sydney; NSW; 2006, Australia;
4.Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming; 650118, China;
5.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China;
6.Shanghai Clinical Research and Trial Center, Shanghai; 200052, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhang, Jiadong,Chen, Qianqian,Zhou, Luping,et al. MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation[C]:Springer Science and Business Media Deutschland GmbH,2023:94-104.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiadong]的文章
[Chen, Qianqian]的文章
[Zhou, Luping]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiadong]的文章
[Chen, Qianqian]的文章
[Zhou, Luping]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiadong]的文章
[Chen, Qianqian]的文章
[Zhou, Luping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。