ShanghaiTech University Knowledge Management System
MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation | |
2023 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14295 LNCS |
页码 | 94-104 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-45350-2_8 |
摘要 | Breast cancer is a major health issue, causing millions of deaths each year worldwide. Magnetic Resonance Imaging (MRI) is an effective tool for detecting and diagnosing breast tumors, with various MRI sequences providing comprehensive information on tumor morphology. However, existing methods for segmenting tumors from multi-parametric MRI have limitations, including the lack of considering inter-modality relationships and exploring task-informative modalities. To address these limitations, we propose the Modality-Specific Information Disentanglement (MoSID) framework, which extracts both intra- and inter-modality attention maps as prior knowledge to guide tumor segmentation from multi-parametric MRI. This is achieved by disentangling modality-specific information that provides complementary clues to the segmentation task and generating modality-specific attention maps in a synthesis manner. The modality-specific attention maps are further used to guide modality selection and inter-modality evaluation. Experiment results on a large breast dataset show that the MoSID achieves superior performance over other state-of-the-art multi-modality segmentation methods, and works reasonably well even with missing modalities. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. |
关键词 | Diagnosis Image segmentation Large dataset Medical imaging Tumors Breast Cancer Breast tumour Disentanglement Effective tool Health issues Imaging sequence Intermodality Segmentation Specific information Tumor segmentation |
会议名称 | 2nd International Workshop on Cancer Prevention through early detecTion, CaPTion 2023 |
会议地点 | Vancover, BC, Canada |
会议日期 | October 12, 2023 - October 12, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234515037248 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346421 |
专题 | 生物医学工程学院 信息科学与技术学院_PI研究组_高飞组 生命科学与技术学院_博士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_崔智铭组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai; 201210, China; 2.School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou; 510515, China; 3.School of Electrical and Information Engineering, The University of Sydney, Sydney; NSW; 2006, Australia; 4.Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming; 650118, China; 5.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China; 6.Shanghai Clinical Research and Trial Center, Shanghai; 200052, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Jiadong,Chen, Qianqian,Zhou, Luping,et al. MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation[C]:Springer Science and Business Media Deutschland GmbH,2023:94-104. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。