| |||||||
ShanghaiTech University Knowledge Management System
Hierarchical Federated Edge Learning over Space-Air-Ground Integrated Networks | |
2023-12-08 | |
会议录名称 | 2023 IEEE GLOBECOM WORKSHOPS (GC WKSHPS)
![]() |
页码 | 190-196 |
发表状态 | 已发表 |
DOI | 10.1109/GCWkshps58843.2023.10464713 |
摘要 | Federated learning (FL), as a key application scenario to support distributed artificial intelligence (AI) services, allows an amount of edge devices to train a global model in tandem. In addition, space-air-ground (SAG) integrated networks are envisioned to provide AI services for remote areas in the next generation of wireless communication system, which provides new opportunities for the integration of SAG and FL. Whereas, the performance of the SAG-FL is limited by significant system latency, high energy consumption, and slow convergence rate. In this paper, we consider a SAG hierarchical FL network, where a low-earth-orbit (LEO) satellite serves as the cloud server and multiple unmanned aerial vehicles (UAVs) act as the edge nodes covering multiple cells of edge devices. Specifically, we provide the convergence analysis of the SAG-FL algorithm, and then alternatively optimize the device scheduling policy and UAVs' trajectory to minimize the system delay and energy consumption between two global aggregations. Simulation results illustrate that the proposed dynamic device scheduling policy is much more time-saving and energy-efficient than the static one. © 2023 IEEE. |
关键词 | Performance evaluation Energy consumption Simulation Heuristic algorithms Low earth orbit satellites Dynamic scheduling Delays |
会议名称 | 2023 IEEE Globecom Workshops, GC Wkshps 2023 |
会议地点 | Kuala Lumpur, Malaysia |
会议日期 | 4-8 Dec. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241615926467 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345932 |
专题 | 信息科学与技术学院_PI研究组_毛奕婕组 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_文鼎柱组 |
作者单位 | 1.ShanghaiTech University, School of Information Science and Technology 2.Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yiji, Wang,Jingyang, Zhu,Yijie, Mao,et al. Hierarchical Federated Edge Learning over Space-Air-Ground Integrated Networks[C]:Institute of Electrical and Electronics Engineers Inc.,2023:190-196. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。