消息
×
loading..
Hierarchical Federated Edge Learning over Space-Air-Ground Integrated Networks
2023-12-08
会议录名称2023 IEEE GLOBECOM WORKSHOPS (GC WKSHPS)
页码190-196
发表状态已发表
DOI10.1109/GCWkshps58843.2023.10464713
摘要Federated learning (FL), as a key application scenario to support distributed artificial intelligence (AI) services, allows an amount of edge devices to train a global model in tandem. In addition, space-air-ground (SAG) integrated networks are envisioned to provide AI services for remote areas in the next generation of wireless communication system, which provides new opportunities for the integration of SAG and FL. Whereas, the performance of the SAG-FL is limited by significant system latency, high energy consumption, and slow convergence rate. In this paper, we consider a SAG hierarchical FL network, where a low-earth-orbit (LEO) satellite serves as the cloud server and multiple unmanned aerial vehicles (UAVs) act as the edge nodes covering multiple cells of edge devices. Specifically, we provide the convergence analysis of the SAG-FL algorithm, and then alternatively optimize the device scheduling policy and UAVs' trajectory to minimize the system delay and energy consumption between two global aggregations. Simulation results illustrate that the proposed dynamic device scheduling policy is much more time-saving and energy-efficient than the static one. © 2023 IEEE.
关键词Performance evaluation Energy consumption Simulation Heuristic algorithms Low earth orbit satellites Dynamic scheduling Delays
会议名称2023 IEEE Globecom Workshops, GC Wkshps 2023
会议地点Kuala Lumpur, Malaysia
会议日期4-8 Dec. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20241615926467
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345932
专题信息科学与技术学院_PI研究组_毛奕婕组
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_文鼎柱组
作者单位
1.ShanghaiTech University, School of Information Science and Technology
2.Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yiji, Wang,Jingyang, Zhu,Yijie, Mao,et al. Hierarchical Federated Edge Learning over Space-Air-Ground Integrated Networks[C]:Institute of Electrical and Electronics Engineers Inc.,2023:190-196.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yiji, Wang]的文章
[Jingyang, Zhu]的文章
[Yijie, Mao]的文章
百度学术
百度学术中相似的文章
[Yiji, Wang]的文章
[Jingyang, Zhu]的文章
[Yijie, Mao]的文章
必应学术
必应学术中相似的文章
[Yiji, Wang]的文章
[Jingyang, Zhu]的文章
[Yijie, Mao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。