ShanghaiTech University Knowledge Management System
A 5-Point Minimal Solver for Event Camera Relative Motion Estimation | |
2023-09 | |
会议录名称 | IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2023
![]() |
ISSN | 1550-5499 |
页码 | 8015-8025 |
发表状态 | 已发表 |
DOI | 10.48550/arXiv.2309.17054 |
摘要 | Event-based cameras are ideal for line-based motion estimation, since they predominantly respond to edges in the scene. However, accurately determining the camera displacement based on events continues to be an open problem. This is because line feature extraction and dynamics estimation are tightly coupled when using event cameras, and no precise model is currently available for describing the complex structures generated by lines in the space-time volume of events. We solve this problem by deriving the correct non-linear parametrization of such manifolds, which we term eventails, and demonstrate its application to eventbased linear motion estimation, with known rotation from an Inertial Measurement Unit. Using this parametrization, we introduce a novel minimal 5-point solver that jointly estimates line parameters and linear camera velocity projections, which can be fused into a single, averaged linear velocity when considering multiple lines. We demonstrate on both synthetic and real data that our solver generates more stable relative motion estimates than other methods while capturing more inliers than clustering based on spatiotemporal planes. In particular, our method consistently achieves a 100% success rate in estimating linear velocity where existing closed-form solvers only achieve between 23% and 70%. The proposed eventails contribute to a better understanding of spatio-temporal event-generated geometries and we thus believe it will become a core building block of future event-based motion estimation algorithms. |
关键词 | Motion estimation matching and tracking |
会议名称 | IEEE/CVF International Conference on Computer Vision (ICCV) |
会议地点 | Paris, France |
会议日期 | October 2, 2023 - October 6, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240915636077 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345913 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_Laurent Kneip组 |
共同第一作者 | Su H(苏杭) |
通讯作者 | Kneip, Laurent |
作者单位 | 1.上海科技大学 2.University of Zurich |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Gao L,Su H,Gehrig, Daniel,et al. A 5-Point Minimal Solver for Event Camera Relative Motion Estimation[C]:Institute of Electrical and Electronics Engineers Inc.,2023:8015-8025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。