A 5-Point Minimal Solver for Event Camera Relative Motion Estimation
2023-09
会议录名称IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2023
ISSN1550-5499
页码8015-8025
发表状态已发表
DOI10.48550/arXiv.2309.17054
摘要

Event-based cameras are ideal for line-based motion estimation, since they predominantly respond to edges in the scene. However, accurately determining the camera displacement based on events continues to be an open problem. This is because line feature extraction and dynamics estimation are tightly coupled when using event cameras, and no precise model is currently available for describing the complex structures generated by lines in the space-time volume of events. We solve this problem by deriving the correct non-linear parametrization of such manifolds, which we term eventails, and demonstrate its application to eventbased linear motion estimation, with known rotation from an Inertial Measurement Unit. Using this parametrization, we introduce a novel minimal 5-point solver that jointly estimates line parameters and linear camera velocity projections, which can be fused into a single, averaged linear velocity when considering multiple lines. We demonstrate on both synthetic and real data that our solver generates more stable relative motion estimates than other methods while capturing more inliers than clustering based on spatiotemporal planes. In particular, our method consistently achieves a 100% success rate in estimating linear velocity where existing closed-form solvers only achieve between 23% and 70%. The proposed eventails contribute to a better understanding of spatio-temporal event-generated geometries and we thus believe it will become a core building block of future event-based motion estimation algorithms.

关键词Motion estimation matching and tracking
会议名称IEEE/CVF International Conference on Computer Vision (ICCV)
会议地点Paris, France
会议日期October 2, 2023 - October 6, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240915636077
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345913
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_Laurent Kneip组
共同第一作者Su H(苏杭)
通讯作者Kneip, Laurent
作者单位
1.上海科技大学
2.University of Zurich
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Gao L,Su H,Gehrig, Daniel,et al. A 5-Point Minimal Solver for Event Camera Relative Motion Estimation[C]:Institute of Electrical and Electronics Engineers Inc.,2023:8015-8025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao L(高翎)]的文章
[Su H(苏杭)]的文章
[Gehrig, Daniel]的文章
百度学术
百度学术中相似的文章
[Gao L(高翎)]的文章
[Su H(苏杭)]的文章
[Gehrig, Daniel]的文章
必应学术
必应学术中相似的文章
[Gao L(高翎)]的文章
[Su H(苏杭)]的文章
[Gehrig, Daniel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。