One Training for Multiple Deployments: Polar-based Adaptive BEV Perception for Autonomous Driving
2023
会议录名称PROCEEDINGS - IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
ISSN1050-4729
卷号2023-May
页码5602-5609
发表状态已发表
DOI10.1109/ICRA48891.2023.10161552
摘要Current on-board chips usually have different computing power, which means multiple training processes are needed for adapting the same learning-based algorithm to different chips, costing huge computing resources. The situation becomes even worse for 3D perception methods with large models. Previous vision-centric 3D perception approaches are trained with regular grid-represented feature maps of fixed resolutions, which is not applicable to adapt to other grid scales, limiting wider deployment. In this paper, we leverage the Polar representation when constructing the BEV feature map from images in order to achieve the goal of training once for multiple deployments. Specifically, the feature along rays in Polar space can be easily adaptively sampled and projected to the feature in Cartesian space with arbitrary resolutions. To further improve the adaptation capability, we make multi-scale contextual information interact with each other to enhance the feature representation. Experiments on a large-scale autonomous driving dataset show that our method outperforms others as for the good property of one training for multiple deployments. © 2023 IEEE.
关键词Computing power Large dataset 'current 3D perception Autonomous driving Computing power Computing resource Feature map Large models Learning-based algorithms Regular grids Training process
会议名称2023 IEEE International Conference on Robotics and Automation, ICRA 2023
会议地点London, United kingdom
会议日期May 29, 2023 - June 2, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233514632065
EI主题词Autonomous vehicles
EI分类号432 Highway Transportation ; 722.2 Computer Peripheral Equipment ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 731.6 Robot Applications
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325842
专题信息科学与技术学院
信息科学与技术学院_PI研究组_马月昕
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Computer Science and Engineering, Hong Kong University of Science and Technology
3.Department of Information Engineering, The Chinese University of Hong Kong
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Huitong Yang,Xuyang Bai,Xinge Zhu,et al. One Training for Multiple Deployments: Polar-based Adaptive BEV Perception for Autonomous Driving[C]:Institute of Electrical and Electronics Engineers Inc.,2023:5602-5609.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huitong Yang]的文章
[Xuyang Bai]的文章
[Xinge Zhu]的文章
百度学术
百度学术中相似的文章
[Huitong Yang]的文章
[Xuyang Bai]的文章
[Xinge Zhu]的文章
必应学术
必应学术中相似的文章
[Huitong Yang]的文章
[Xuyang Bai]的文章
[Xinge Zhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICRA48891.2023.10161552.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。