ShanghaiTech University Knowledge Management System
Unified Optimal Transport Framework for Universal Domain Adaptation | |
2022 | |
会议录名称 | ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022)
![]() |
ISSN | 1049-5258 |
摘要 | Universal Domain Adaptation (UniDA) aims to transfer knowledge from a source domain to a target domain without any constraints on label sets. Since both domains may hold private classes, identifying target common samples for domain alignment is an essential issue in UniDA. Most existing methods require manually specified or hand-tuned threshold values to detect common samples thus they are hard to extend to more realistic UniDA because of the diverse ratios of common classes. Moreover, they cannot recognize different categories among target-private samples as these private samples are treated as a whole. In this paper, we propose to use Optimal Transport (OT) to handle these issues under a unified framework, namely UniOT. First, an OT-based partial alignment with adaptive filling is designed to detect common classes without any predefined threshold values for realistic UniDA. It can automatically discover the intrinsic difference between common and private classes based on the statistical information of the assignment matrix obtained from OT. Second, we propose an OT-based target representation learning that encourages both global discrimination and local consistency of samples to avoid the over-reliance on the source. Notably, UniOT is the first method with the capability to automatically discover and recognize private categories in the target domain for UniDA. Accordingly, we introduce a new metric H-3-score to evaluate the performance in terms of both accuracy of common samples and clustering performance of private ones. Extensive experiments clearly demonstrate the advantages of UniOT over a wide range of state-of-the-art methods in UniDA. |
会议名称 | 36th Conference on Neural Information Processing Systems (NeurIPS) |
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | NOV 28-DEC 09, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai Sailing Program["21YF1429400","22YF1428800"] ; Shanghai Local College Capacity Building Program[23010503100] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems |
WOS记录号 | WOS:001213811609031 |
出版者 | NEURAL INFORMATION PROCESSING SYSTEMS (NIPS) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/317217 |
专题 | 信息科学与技术学院_PI研究组_石野组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_汪婧雅组 |
作者单位 | 1.ShanghaiTech University, China; 2.University of Technology Sydney, Australia; 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chang, Wanxing,Shi, Ye,Tuan, Hoang Duong,et al. Unified Optimal Transport Framework for Universal Domain Adaptation[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。