| |||||||
ShanghaiTech University Knowledge Management System
FedTP: Federated Learning by Transformer Personalization | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (IF:10.2[JCR-2023],10.4[5-Year]) |
ISSN | 2162-237X |
EISSN | 2162-2388 |
卷号 | PP期号:99页码:1-15 |
发表状态 | 已发表 |
DOI | 10.1109/TNNLS.2023.3269062 |
摘要 | Federated learning is an emerging learning paradigm where multiple clients collaboratively train a machine learning model in a privacy-preserving manner. Personalized federated learning extends this paradigm to overcome heterogeneity across clients by learning personalized models. Recently, there have been some initial attempts to apply transformers to federated learning. However, the impacts of federated learning algorithms on self-attention have not yet been studied. In this article, we investigate this relationship and reveal that federated averaging (FedAvg) algorithms actually have a negative impact on self-attention in cases of data heterogeneity, which limits the capabilities of the transformer model in federated learning settings. To address this issue, we propose FedTP, a novel transformer-based federated learning framework that learns personalized self-attention for each client while aggregating the other parameters among the clients. Instead of using a vanilla personalization mechanism that maintains personalized self-attention layers of each client locally, we develop a learn-to-personalize mechanism to further encourage the cooperation among clients and to increase the scalability and generalization of FedTP. Specifically, we achieve this by learning a hypernetwork on the server that outputs the personalized projection matrices of self-attention layers to generate clientwise queries, keys, and values. Furthermore, we present the generalization bound for FedTP with the learn-to-personalize mechanism. Extensive experiments verify that FedTP with the learn-to-personalize mechanism yields state-of-the-art performance in the non-IID scenarios. Our code is available online https://github.com/zhyczy/FedTP. IEEE |
关键词 | Data privacy Job analysis Learning algorithms Learning systems Machine learning Federated learning Hypernetwork Learn+ Learn-to-personalize Personalizations Personalized federated learning Self-attention Task analysis Transformer |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Sailing Program[ |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001005747100001 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20232314197561 |
EI主题词 | Scalability |
EI分类号 | 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 961 Systems Science |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312341 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_汪婧雅组 信息科学与技术学院_PI研究组_石野组 |
共同第一作者 | Cai, Zhongyi |
通讯作者 | Shi, Ye |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China 3.Univ Technol Sydney, Sch Comp Sci, Broadway, NSW 2007, Australia |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Hongxia,Cai, Zhongyi,Wang, Jingya,et al. FedTP: Federated Learning by Transformer Personalization[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023,PP(99):1-15. |
APA | Li, Hongxia.,Cai, Zhongyi.,Wang, Jingya.,Tang, Jiangnan.,Ding, Weiping.,...&Shi, Ye.(2023).FedTP: Federated Learning by Transformer Personalization.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,PP(99),1-15. |
MLA | Li, Hongxia,et al."FedTP: Federated Learning by Transformer Personalization".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS PP.99(2023):1-15. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。