Multi-Dimensional Residual Dense Attention Network for Stereo Matching
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7期号:99页码:51681-51690
发表状态已发表
DOI10.1109/ACCESS.2019.2911618
摘要Very deep convolutional neural networks (CNNs) have recently achieved great success in stereo matching. It is still highly desirable to learn a robust feature map to improve ill-posed regions, such as weakly textured regions, reflective surfaces, and repetitive patterns. Therefore, we propose an endto-end multi-dimensional residual dense attention network (MRDA-Net) in this paper, focusing on more comprehensive pixel-wise feature extraction. Our proposed network consists of two parts: the 2D residual dense attention net for feature extraction and the 3D convolutional attention net for matching. Our designed 2D residual dense attention net uses a dense network structure to fully exploit the hierarchical features from preceding convolutional layers and uses residual network structure to fuse low-level structure information and high-level semantic information. The 2D attention module of the net aims to adaptively recalibrate channel-wise features to be more concerned about informative features. Our proposed 3D convolutional attention net further expands attention mechanism for matching. The stacked hourglass module of the net is exploited to extract multi-scale context information as well as geometry information. The novel 3D attention module of the net aggregates hierarchical sub-cost volumes adaptively instead of manually and then achieves a comprehensive recalibrated cost volume for more correct disparity computation. The experiments demonstrate that our approach achieves the state-of-the-art accuracy on Scene Flow dataset and KITTI 2012 and KITTI 2015 Stereo datasets.
关键词Stereo matching multi-dimensional residual dense attention hierarchical 3D attention mechanism
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目Shanghai Science and Technology Committee, China[17511108202]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000466706300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20192407025701
EI主题词Convolution ; Deep neural networks ; Extraction ; Feature extraction ; Neural networks ; Semantics ; Textures
EI分类号Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Chemical Operations:802.3
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/31163
专题信息科学与技术学院_特聘教授组_张晓林组
通讯作者Li, Jiamao
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Bion Vis Syst Lab, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat & Technol, Shanghai 200050, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Guanghui,Zhu, Dongchen,Shi, Wenjun,et al. Multi-Dimensional Residual Dense Attention Network for Stereo Matching[J]. IEEE ACCESS,2019,7(99):51681-51690.
APA Zhang, Guanghui,Zhu, Dongchen,Shi, Wenjun,Ye, Xiaoqing,Li, Jiamao,&Zhang, Xiaolin.(2019).Multi-Dimensional Residual Dense Attention Network for Stereo Matching.IEEE ACCESS,7(99),51681-51690.
MLA Zhang, Guanghui,et al."Multi-Dimensional Residual Dense Attention Network for Stereo Matching".IEEE ACCESS 7.99(2019):51681-51690.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
[Shi, Wenjun]的文章
百度学术
百度学术中相似的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
[Shi, Wenjun]的文章
必应学术
必应学术中相似的文章
[Zhang, Guanghui]的文章
[Zhu, Dongchen]的文章
[Shi, Wenjun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ACCESS.2019.2911618.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。