Spectral methods for solving elliptic PDEs on unknown manifolds
2023-08-01
发表期刊JOURNAL OF COMPUTATIONAL PHYSICS
ISSN0021-9991
EISSN1090-2716
卷号486
发表状态已发表
DOI10.1016/j.jcp.2023.112132
摘要In this paper, we propose a mesh-free numerical method for solving elliptic PDEs on unknown manifolds, identified with randomly sampled point cloud data. The PDE solver is formulated as a spectral method where the test function space is the span of the leading eigenfunctions of the Laplacian operator, which are approximated from the point cloud data. While the framework is flexible for any test functional space, we will consider the eigensolutions of a weighted Laplacian obtained from a symmetric Radial Basis Function (RBF) method induced by a weak approximation of a weighted Laplacian on an appropriate Hilbert space. In this paper, we consider a test function space that encodes the geometry of the data yet does not require us to identify and use the sampling density of the point cloud. To attain a more accurate approximation of the expansion coefficients, we adopt a second -order tangent space estimation method to improve the RBF interpolation accuracy in estimating the tangential derivatives. This spectral framework allows us to efficiently solve the PDE many times subjected to different parameters, which reduces the computational cost in the related inverse problem applications. In a well-posed elliptic PDE setting with randomly sampled point cloud data, we provide a theoretical analysis to demonstrate the convergence of the proposed solver as the sample size increases. We also report some numerical studies that show the convergence of the spectral solver on simple manifolds and unknown, rough surfaces. Our numerical results suggest that the proposed method is more accurate than a graph Laplacian-based solver on smooth manifolds. On rough manifolds, these two approaches are comparable. Due to the flexibility of the framework, we empirically found improved accuracies in both smoothed and unsmoothed Stanford bunny domains by blending the graph Laplacian eigensolutions and RBF interpolator. (c) 2023 Elsevier Inc. All rights reserved.
关键词Radial basis function Galerkin approximation Elliptic PDEs solver Point cloud data
URL查看原文
收录类别SCI ; EI
语种英语
资助项目NSF["DMS-1854299","DMS-2207328","DMS-2229435"] ; ONR[N00014-22-1-2193] ; NSFC[12101408]
WOS研究方向Computer Science ; Physics
WOS类目Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号WOS:000984517400001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
EI入藏号20231613896756
EI主题词Inverse problems
EI分类号802.3 Chemical Operations ; 921 Mathematics ; 921.3 Mathematical Transformations ; 921.6 Numerical Methods
原始文献类型Journal article (JA)
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/305029
专题数学科学研究所
数学科学研究所_PI研究组(P)_蒋诗晓组
通讯作者Yan, Qile
作者单位
1.Penn State Univ, Dept Math, University Pk, PA 16802 USA
2.ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China
3.Penn State Univ, Inst Computat & Data Sci, Dept Math, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
推荐引用方式
GB/T 7714
Yan, Qile,Jiang, Shixiao Willing,Harlim, John. Spectral methods for solving elliptic PDEs on unknown manifolds[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,486.
APA Yan, Qile,Jiang, Shixiao Willing,&Harlim, John.(2023).Spectral methods for solving elliptic PDEs on unknown manifolds.JOURNAL OF COMPUTATIONAL PHYSICS,486.
MLA Yan, Qile,et al."Spectral methods for solving elliptic PDEs on unknown manifolds".JOURNAL OF COMPUTATIONAL PHYSICS 486(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
百度学术
百度学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
必应学术
必应学术中相似的文章
[Yan, Qile]的文章
[Jiang, Shixiao Willing]的文章
[Harlim, John]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1016@j.jcp.2023.112132.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。