消息
×
loading..
MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules
2023-04-08
发表期刊JOURNAL OF CHEMINFORMATICS (IF:7.1[JCR-2023],9.3[5-Year])
ISSN1758-2946
卷号15期号:1
发表状态已发表
DOI10.1186/s13321-023-00711-1
摘要Artificial intelligence (AI)-based molecular design methods, especially deep generative models for generating novel molecule structures, have gratified our imagination to explore unknown chemical space without relying on brute-force exploration. However, whether designed by AI or human experts, the molecules need to be accessibly synthesized and biologically evaluated, and the trial-and-error process remains a resources-intensive endeavor. Therefore, AI-based drug design methods face a major challenge of how to prioritize the molecular structures with potential for subsequent drug development. This study indicates that common filtering approaches based on traditional screening metrics fail to differentiate AI-designed molecules. To address this issue, we propose a novel molecular filtering method, MolFilterGAN, based on a progressively augmented generative adversarial network. Comparative analysis shows that MolFilterGAN outperforms conventional screening approaches based on drug-likeness or synthetic ability metrics. Retrospective analysis of AI-designed discoidin domain receptor 1 (DDR1) inhibitors shows that MolFilterGAN significantly increases the efficiency of molecular triaging. Further evaluation of MolFilterGAN on eight external ligand sets suggests that MolFilterGAN is useful in triaging or enriching bioactive compounds across a wide range of target types. These results highlighted the importance of MolFilterGAN in evaluating molecules integrally and further accelerating molecular discovery especially combined with advanced AI generative models.
关键词De novo molecule design Generative models Deep learning Virtual screening Compound quality control
URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China["T2225002","82273855","82204278"] ; Lingang Laboratory["LG202102-01-02","LG-QS-202204-01"] ; National Key Research and Development Program of China[2022YFC3400504] ; China Postdoctoral Science Foundation[2022M720153] ; Youth Innovation Promotion Association CAS[2023296]
WOS研究方向Chemistry ; Computer Science
WOS类目Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000966066000001
出版者BMC
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/296032
专题免疫化学研究所
免疫化学研究所_特聘教授组_蒋华良组
生命科学与技术学院_博士生
通讯作者Li, Xutong; Zheng, Mingyue
作者单位
1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
3.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
4.AlphaMa Inc, 108, Yuxin Rd,Suzhou Ind Pk, Suzhou 215128, Peoples R China
5.ByteDance AI Lab, 1999 Yishan Rd, Shanghai 201103, Peoples R China
6.East China Univ Sci & Technol, Sch Pharm, 130 Meilong Rd, Shanghai 200237, Peoples R China
7.Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 310024, Peoples R China
第一作者单位免疫化学研究所
第一作者的第一单位免疫化学研究所
推荐引用方式
GB/T 7714
Liu, Xiaohong,Zhang, Wei,Tong, Xiaochu,et al. MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules[J]. JOURNAL OF CHEMINFORMATICS,2023,15(1).
APA Liu, Xiaohong.,Zhang, Wei.,Tong, Xiaochu.,Zhong, Feisheng.,Li, Zhaojun.,...&Zheng, Mingyue.(2023).MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules.JOURNAL OF CHEMINFORMATICS,15(1).
MLA Liu, Xiaohong,et al."MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules".JOURNAL OF CHEMINFORMATICS 15.1(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Xiaohong]的文章
[Zhang, Wei]的文章
[Tong, Xiaochu]的文章
百度学术
百度学术中相似的文章
[Liu, Xiaohong]的文章
[Zhang, Wei]的文章
[Tong, Xiaochu]的文章
必应学术
必应学术中相似的文章
[Liu, Xiaohong]的文章
[Zhang, Wei]的文章
[Tong, Xiaochu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1186@s13321-023-00711-1.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。