ShanghaiTech University Knowledge Management System
Local network component analysis for quantifying transcription factor activities | |
2017-07-15 | |
发表期刊 | METHODS (IF:4.2[JCR-2023],3.8[5-Year]) |
ISSN | 1046-2023 |
卷号 | 124页码:25-35 |
发表状态 | 已发表 |
DOI | 10.1016/j.ymeth.2017.06.018 |
摘要 | Transcription factors (TFs) could regulate physiological transitions or determine stable phenotypic diversity. The accurate estimation on TF regulatory signals or functional activities is of great significance to guide biological experiments or elucidate molecular mechanisms, but still remains challenging. Traditional methods identify TF regulatory signals at the population level, which masks heterogeneous regulation mechanisms in individuals or subgroups, thus resulting in inaccurate analyses. Here, we propose a novel computational framework, namely local network component analysis (LNCA), to exploit data heterogeneity and automatically quantify accurate transcription factor activity (TFA) in practical terms, through integrating the partitioned expression sets (i.e., local information) and prior TF-gene regulatory knowledge. Specifically, LNCA adopts an adaptive optimization strategy, which evaluates the local similarities of regulation controls and corrects biases during data integration, to construct the TFA landscape. In particular, we first numerically demonstrate the effectiveness of LNCA for the simulated data sets, compared with traditional methods, such as FastNCA, ROBNCA and NINCA. Then, we apply our model to two real data sets with implicit temporal or spatial regulation variations. The results show that LNCA not only recognizes the periodic mode along the S. cerevisiae cell cycle process, but also substantially outperforms over other methods in terms of accuracy and consistency. In addition, the cross validation study for glioblastomas multiforme (GBM) indicates that the TFAs, identified by LNCA, can better distinguish clinically distinct tumor groups than the expression values of the corresponding TFs, thus opening a new way to classify tumor subtypes and also providing a novel insight into cancer heterogeneity. (C) 2017 Elsevier Inc. All rights reserved. |
关键词 | Network component analysis Integrative analysis Data heterogeneity Transcription factor activities Adaptive optimization strategy |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of Shanghai[17ZR1446100] |
WOS研究方向 | Biochemistry & Molecular Biology |
WOS类目 | Biochemical Research Methods ; Biochemistry & Molecular Biology |
WOS记录号 | WOS:000407409000004 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
WOS关键词 | NONLINEAR DIMENSIONALITY REDUCTION ; REGULATORY NETWORKS ; DISEASE ; IDENTIFICATION ; PROGRESSION ; PREDICTION ; INITIATION ; FRAMEWORK ; PHASE ; CHIP |
原始文献类型 | Article |
通讯作者 | Chen, Luonan |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2894 |
专题 | 生命科学与技术学院 生命科学与技术学院_特聘教授组_陈洛南组 生命科学与技术学院_硕士生 |
通讯作者 | Chen, Luonan |
作者单位 | 1.Univ Chinese Acad Sci, Chinese Acad Sci, Shanghai Inst Biol Sci,Key Lab Syst Biol, Inst Biochem & Cell Biol,CAS Ctr Excellence Mol C, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China 3.Wuhan Univ, Sch Comp, State Key Lab Software Engn, Wuhan, Hubei, Peoples R China 4.Northwestern Polytech Univ, Sch Automat, Minist Educ, Key Lab Informat Fus Technol, Xian, Shaanxi, Peoples R China |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Shi, Qianqian,Zhang, Chuanchao,Guo, Weifeng,et al. Local network component analysis for quantifying transcription factor activities[J]. METHODS,2017,124:25-35. |
APA | Shi, Qianqian.,Zhang, Chuanchao.,Guo, Weifeng.,Zeng, Tao.,Lu, Lina.,...&Chen, Luonan.(2017).Local network component analysis for quantifying transcription factor activities.METHODS,124,25-35. |
MLA | Shi, Qianqian,et al."Local network component analysis for quantifying transcription factor activities".METHODS 124(2017):25-35. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。