Local network component analysis for quantifying transcription factor activities
2017-07-15
发表期刊METHODS (IF:4.2[JCR-2023],3.8[5-Year])
ISSN1046-2023
卷号124页码:25-35
发表状态已发表
DOI10.1016/j.ymeth.2017.06.018
摘要Transcription factors (TFs) could regulate physiological transitions or determine stable phenotypic diversity. The accurate estimation on TF regulatory signals or functional activities is of great significance to guide biological experiments or elucidate molecular mechanisms, but still remains challenging. Traditional methods identify TF regulatory signals at the population level, which masks heterogeneous regulation mechanisms in individuals or subgroups, thus resulting in inaccurate analyses. Here, we propose a novel computational framework, namely local network component analysis (LNCA), to exploit data heterogeneity and automatically quantify accurate transcription factor activity (TFA) in practical terms, through integrating the partitioned expression sets (i.e., local information) and prior TF-gene regulatory knowledge. Specifically, LNCA adopts an adaptive optimization strategy, which evaluates the local similarities of regulation controls and corrects biases during data integration, to construct the TFA landscape. In particular, we first numerically demonstrate the effectiveness of LNCA for the simulated data sets, compared with traditional methods, such as FastNCA, ROBNCA and NINCA. Then, we apply our model to two real data sets with implicit temporal or spatial regulation variations. The results show that LNCA not only recognizes the periodic mode along the S. cerevisiae cell cycle process, but also substantially outperforms over other methods in terms of accuracy and consistency. In addition, the cross validation study for glioblastomas multiforme (GBM) indicates that the TFAs, identified by LNCA, can better distinguish clinically distinct tumor groups than the expression values of the corresponding TFs, thus opening a new way to classify tumor subtypes and also providing a novel insight into cancer heterogeneity. (C) 2017 Elsevier Inc. All rights reserved.
关键词Network component analysis Integrative analysis Data heterogeneity Transcription factor activities Adaptive optimization strategy
收录类别SCI
语种英语
资助项目Natural Science Foundation of Shanghai[17ZR1446100]
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemical Research Methods ; Biochemistry & Molecular Biology
WOS记录号WOS:000407409000004
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
WOS关键词NONLINEAR DIMENSIONALITY REDUCTION ; REGULATORY NETWORKS ; DISEASE ; IDENTIFICATION ; PROGRESSION ; PREDICTION ; INITIATION ; FRAMEWORK ; PHASE ; CHIP
原始文献类型Article
通讯作者Chen, Luonan
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2894
专题生命科学与技术学院
生命科学与技术学院_特聘教授组_陈洛南组
生命科学与技术学院_硕士生
通讯作者Chen, Luonan
作者单位
1.Univ Chinese Acad Sci, Chinese Acad Sci, Shanghai Inst Biol Sci,Key Lab Syst Biol, Inst Biochem & Cell Biol,CAS Ctr Excellence Mol C, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
3.Wuhan Univ, Sch Comp, State Key Lab Software Engn, Wuhan, Hubei, Peoples R China
4.Northwestern Polytech Univ, Sch Automat, Minist Educ, Key Lab Informat Fus Technol, Xian, Shaanxi, Peoples R China
通讯作者单位生命科学与技术学院
推荐引用方式
GB/T 7714
Shi, Qianqian,Zhang, Chuanchao,Guo, Weifeng,et al. Local network component analysis for quantifying transcription factor activities[J]. METHODS,2017,124:25-35.
APA Shi, Qianqian.,Zhang, Chuanchao.,Guo, Weifeng.,Zeng, Tao.,Lu, Lina.,...&Chen, Luonan.(2017).Local network component analysis for quantifying transcription factor activities.METHODS,124,25-35.
MLA Shi, Qianqian,et al."Local network component analysis for quantifying transcription factor activities".METHODS 124(2017):25-35.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Qianqian]的文章
[Zhang, Chuanchao]的文章
[Guo, Weifeng]的文章
百度学术
百度学术中相似的文章
[Shi, Qianqian]的文章
[Zhang, Chuanchao]的文章
[Guo, Weifeng]的文章
必应学术
必应学术中相似的文章
[Shi, Qianqian]的文章
[Zhang, Chuanchao]的文章
[Guo, Weifeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2894.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。