ShanghaiTech University Knowledge Management System
Rank-Adaptive Tensor Completion Based on Tucker Decomposition | |
2023-02-01 | |
发表期刊 | ENTROPY; (IF:2.1[JCR-2023],2.2[5-Year]) |
ISSN | 1099-4300 |
EISSN | 1099-4300 |
卷号 | 25期号:2 |
发表状态 | 已发表 |
DOI | 10.3390/e25020225 |
摘要 | Tensor completion is a fundamental tool to estimate unknown information from observed data, which is widely used in many areas, including image and video recovery, traffic data completion and the multi-input multi-output problems in information theory. Based on Tucker decomposition, this paper proposes a new algorithm to complete tensors with missing data. In decomposition-based tensor completion methods, underestimation or overestimation of tensor ranks can lead to inaccurate results. To tackle this problem, we design an alternative iterating method that breaks the original problem into several matrix completion subproblems and adaptively adjusts the multilinear rank of the model during optimization procedures. Through numerical experiments on synthetic data and authentic images, we show that the proposed method can effectively estimate the tensor ranks and predict the missing entries. |
关键词 | HOOI algorithm rank-adaptive methods SVT algorithm tensor completion Tucker decomposition |
学科门类 | Information Systems ; Mathematical Physics ; Physics and Astronomy (miscellaneous) ; Electrical and Electronic Engineering |
URL | 查看原文 |
收录类别 | SCOPUS ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[12071291] ; Science and Technology Commission of Shanghai Municipality[20JC1414300] ; Natural Science Foundation of Shanghai[20ZR1436200] |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:000944975200001 |
出版者 | MDPI |
原始文献类型 | Article |
Scopus 记录号 | 2-s2.0-85148957207 |
来源库 | SCOPUS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286486 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_廖奇峰组 信息科学与技术学院_硕士生 |
通讯作者 | Liao, Qifeng |
作者单位 | ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Siqi,Shi, Xiaoyu,Liao, Qifeng. Rank-Adaptive Tensor Completion Based on Tucker Decomposition[J]. ENTROPY;,2023,25(2). |
APA | Liu, Siqi,Shi, Xiaoyu,&Liao, Qifeng.(2023).Rank-Adaptive Tensor Completion Based on Tucker Decomposition.ENTROPY;,25(2). |
MLA | Liu, Siqi,et al."Rank-Adaptive Tensor Completion Based on Tucker Decomposition".ENTROPY; 25.2(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。