Rank-Adaptive Tensor Completion Based on Tucker Decomposition
2023-02-01
发表期刊ENTROPY; (IF:2.1[JCR-2023],2.2[5-Year])
ISSN1099-4300
EISSN1099-4300
卷号25期号:2
发表状态已发表
DOI10.3390/e25020225
摘要Tensor completion is a fundamental tool to estimate unknown information from observed data, which is widely used in many areas, including image and video recovery, traffic data completion and the multi-input multi-output problems in information theory. Based on Tucker decomposition, this paper proposes a new algorithm to complete tensors with missing data. In decomposition-based tensor completion methods, underestimation or overestimation of tensor ranks can lead to inaccurate results. To tackle this problem, we design an alternative iterating method that breaks the original problem into several matrix completion subproblems and adaptively adjusts the multilinear rank of the model during optimization procedures. Through numerical experiments on synthetic data and authentic images, we show that the proposed method can effectively estimate the tensor ranks and predict the missing entries.
关键词HOOI algorithm rank-adaptive methods SVT algorithm tensor completion Tucker decomposition
学科门类Information Systems ; Mathematical Physics ; Physics and Astronomy (miscellaneous) ; Electrical and Electronic Engineering
URL查看原文
收录类别SCOPUS ; SCI
语种英语
资助项目National Natural Science Foundation of China[12071291] ; Science and Technology Commission of Shanghai Municipality[20JC1414300] ; Natural Science Foundation of Shanghai[20ZR1436200]
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000944975200001
出版者MDPI
原始文献类型Article
Scopus 记录号2-s2.0-85148957207
来源库SCOPUS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286486
专题信息科学与技术学院
信息科学与技术学院_PI研究组_廖奇峰组
信息科学与技术学院_硕士生
通讯作者Liao, Qifeng
作者单位
ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Siqi,Shi, Xiaoyu,Liao, Qifeng. Rank-Adaptive Tensor Completion Based on Tucker Decomposition[J]. ENTROPY;,2023,25(2).
APA Liu, Siqi,Shi, Xiaoyu,&Liao, Qifeng.(2023).Rank-Adaptive Tensor Completion Based on Tucker Decomposition.ENTROPY;,25(2).
MLA Liu, Siqi,et al."Rank-Adaptive Tensor Completion Based on Tucker Decomposition".ENTROPY; 25.2(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Siqi]的文章
[Shi, Xiaoyu]的文章
[Liao, Qifeng]的文章
百度学术
百度学术中相似的文章
[Liu, Siqi]的文章
[Shi, Xiaoyu]的文章
[Liao, Qifeng]的文章
必应学术
必应学术中相似的文章
[Liu, Siqi]的文章
[Shi, Xiaoyu]的文章
[Liao, Qifeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@e25020225.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。