Social-Aware Edge Intelligence: A Constrained Graphical Bandit Approach
2022
会议录名称2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE, GLOBECOM 2022 - PROCEEDINGS
ISSN1930-529X
页码6372-6377
发表状态已发表
DOI10.1109/GLOBECOM48099.2022.10000778
摘要

The flourished edge intelligence has motivated the execution of machine learning tasks at the network edge. In this paper, we focus on distributing training, one of the core tasks, that is carried out by an edge server of limited communication capacity and multiple end devices. In distributed training, the key issue for the edge server is how to dynamically select a proper subset of end devices to periodically participate in the training. Such a dynamic end device selection problem is hindered by concerns like 1) unknown system dynamics, e.g., transmission latencies; 2) limited energy resources on end devices; and 3) unbalanced and non-IID data distribution over end devices. Therefore, the core challenge lies in the coordination of online learning and online control to fulfill both efficient learning of unknown statistics and guarantees of within-budget energy consumption and fairness selection. To address the above challenge, we first characterize the social ties among users of end devices as a social graph and then formulate the dynamic end device selection problem from the perspective of constrained graphical bandits. Under the formulation, we propose GRIND to effectively integrate graphical bandit learning methods with Lyapunov-drift techniques. The theoretical superiority of GRIND is not only 1) the achieved sub-linear round-averaged regret with satisfied long-term constraints but also 2) the characterization of graph structure with the independence number. Extensive simulations also verify the effectiveness of GRIND in terms of both latency reduction and long-term constraint satisfaction. © 2022 IEEE.

关键词Budget control Energy resources Graphic methods Grinding (machining) Learning systems Device selection Edge intelligence Edge server End-devices Learning tasks Limited communication Machine-learning Network edges Selection problems Social-aware
会议名称2022 IEEE Global Communications Conference, GLOBECOM 2022
会议地点Virtual, Online, Brazil
会议日期December 4, 2022 - December 8, 2022
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20230513464962
EI主题词Energy utilization
EI分类号525.1 Energy Resources and Renewable Energy Issues ; 525.3 Energy Utilization ; 604.2 Machining Operations
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282074
专题信息科学与技术学院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Simeng Bian,Shangshang Wang,Yinxu Tang,et al. Social-Aware Edge Intelligence: A Constrained Graphical Bandit Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2022:6372-6377.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Simeng Bian]的文章
[Shangshang Wang]的文章
[Yinxu Tang]的文章
百度学术
百度学术中相似的文章
[Simeng Bian]的文章
[Shangshang Wang]的文章
[Yinxu Tang]的文章
必应学术
必应学术中相似的文章
[Simeng Bian]的文章
[Shangshang Wang]的文章
[Yinxu Tang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。