ShanghaiTech University Knowledge Management System
Social-Aware Edge Intelligence: A Constrained Graphical Bandit Approach | |
2022 | |
会议录名称 | 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE, GLOBECOM 2022 - PROCEEDINGS |
ISSN | 1930-529X |
页码 | 6372-6377 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM48099.2022.10000778 |
摘要 | The flourished edge intelligence has motivated the execution of machine learning tasks at the network edge. In this paper, we focus on distributing training, one of the core tasks, that is carried out by an edge server of limited communication capacity and multiple end devices. In distributed training, the key issue for the edge server is how to dynamically select a proper subset of end devices to periodically participate in the training. Such a dynamic end device selection problem is hindered by concerns like 1) unknown system dynamics, e.g., transmission latencies; 2) limited energy resources on end devices; and 3) unbalanced and non-IID data distribution over end devices. Therefore, the core challenge lies in the coordination of online learning and online control to fulfill both efficient learning of unknown statistics and guarantees of within-budget energy consumption and fairness selection. To address the above challenge, we first characterize the social ties among users of end devices as a social graph and then formulate the dynamic end device selection problem from the perspective of constrained graphical bandits. Under the formulation, we propose GRIND to effectively integrate graphical bandit learning methods with Lyapunov-drift techniques. The theoretical superiority of GRIND is not only 1) the achieved sub-linear round-averaged regret with satisfied long-term constraints but also 2) the characterization of graph structure with the independence number. Extensive simulations also verify the effectiveness of GRIND in terms of both latency reduction and long-term constraint satisfaction. © 2022 IEEE. |
关键词 | Budget control Energy resources Graphic methods Grinding (machining) Learning systems Device selection Edge intelligence Edge server End-devices Learning tasks Limited communication Machine-learning Network edges Selection problems Social-aware |
会议名称 | 2022 IEEE Global Communications Conference, GLOBECOM 2022 |
会议地点 | Virtual, Online, Brazil |
会议日期 | December 4, 2022 - December 8, 2022 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20230513464962 |
EI主题词 | Energy utilization |
EI分类号 | 525.1 Energy Resources and Renewable Energy Issues ; 525.3 Energy Utilization ; 604.2 Machining Operations |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282074 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Simeng Bian,Shangshang Wang,Yinxu Tang,et al. Social-Aware Edge Intelligence: A Constrained Graphical Bandit Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2022:6372-6377. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。