ShanghaiTech University Knowledge Management System
A Sobolev rough path extension theorem via regularity structures | |
2023 | |
发表期刊 | ESAIM - PROBABILITY AND STATISTICS |
ISSN | 1292-8100 |
EISSN | 1262-3318 |
卷号 | 27页码:136-155 |
发表状态 | 已发表 |
DOI | 10.1051/ps/2022016 |
摘要 | We show that every Rd-valued Sobolev path with regularity _ and integrability p can be lifted to a Sobolev rough path provided 1=2 > _ > 1=p _ 1=3. The novelty of our approach is its use of ideas underlying Hairer's reconstruction theorem generalized to a framework allowing for Sobolev models and Sobolev modelled distributions. Moreover, we show that the corresponding lifting map is locally Lipschitz continuous with respect to the inhomogeneous Sobolev metric. © 2023 EDP Sciences. All rights reserved. |
关键词 | Extension theorem Fractional sobolev space Integrability Locally lipschitz Lyons-victoir extension theorem Reconstruction theorems Regularity structure Rough path Sobolev Sobolev models |
URL | 查看原文 |
收录类别 | EI ; SCI ; SCOPUS |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000917021600001 |
出版者 | EDP Sciences |
EI入藏号 | 20230513474299 |
EI主题词 | Sobolev spaces |
EI分类号 | 921 Mathematics |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281982 |
专题 | 数学科学研究所_PI研究组(P)_刘翀组 |
通讯作者 | Promel, David J. |
作者单位 | 1.Shanghai Tech Univ, Shanghai, Peoples R China 2.Univ Mannheim, Mannheim, Germany 3.Swiss Fed Inst Technol, Zurich, Switzerland |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liu, Chong,Promel, David J.,Teichmann, Josef. A Sobolev rough path extension theorem via regularity structures[J]. ESAIM - PROBABILITY AND STATISTICS,2023,27:136-155. |
APA | Liu, Chong,Promel, David J.,&Teichmann, Josef.(2023).A Sobolev rough path extension theorem via regularity structures.ESAIM - PROBABILITY AND STATISTICS,27,136-155. |
MLA | Liu, Chong,et al."A Sobolev rough path extension theorem via regularity structures".ESAIM - PROBABILITY AND STATISTICS 27(2023):136-155. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。