| |||||||
ShanghaiTech University Knowledge Management System
Social-Aware Distributed Meta-Learning: A Perspective of Constrained Graphical Bandits | |
2023 | |
会议录名称 | IEEE ICC 2023 |
ISSN | 1938-1883 |
卷号 | 2023-May |
页码 | 4385-4390 |
发表状态 | 已发表 |
DOI | 10.1109/ICC45041.2023.10278850 |
摘要 | Meta-learning has earned its wide popularity to handle a family of similar tasks (e.g., classification of pets and wildlife) with elaborately trained meta-knowledge (e.g., shared network architecture and neural network parameter initialization). In this paper, we focus on the distributed training of meta-knowledge via server-device collaboration at the edge (i.e., distributed meta-learning). Notably, its practical implementation often runs into concerns like 1) time-varying unknown wireless dynamics (e.g., transmission latency); 2) device-side fair device involvement in distributed training; 3) server-side resource efficiency. To address such concerns, 1) we employ online learning to estimate the unknown dynamics and further exploit social ties among device users to accelerate online learning; 2) we utilize online control techniques to handle long-term fairness and resource constraints. By characterizing inter-user social ties as a social graph, we study distributed meta-learning from the perspective of constrained graphical bandits. Therefore, we propose a SoCial-awarE meta-kNowledge dispaTch (SCENT) algorithm by effectively integrating graphical bandit learning and online control. Besides a sublinear regret (i.e., loss of performance), SCENT also guarantees a well-trained meta-knowledge under within-budget resource consumption and fair device involvement. We conduct simulations to justify the outperformance of SCENT compared with baselines. © 2023 IEEE. |
关键词 | Metalearning Training Wireless communication Performance evaluation Simulation Wildlife Neural networks |
会议名称 | 2023 IEEE International Conference on Communications, ICC 2023 |
会议地点 | Rome, Italy |
会议日期 | 28 May-1 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815114432 |
EI主题词 | Network architecture |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281927 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shangshang Wang,Simeng Bian,Yinxu Tang,et al. Social-Aware Distributed Meta-Learning: A Perspective of Constrained Graphical Bandits[C]:Institute of Electrical and Electronics Engineers Inc.,2023:4385-4390. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。