消息
×
loading..
Social-Aware Distributed Meta-Learning: A Perspective of Constrained Graphical Bandits
2023
会议录名称IEEE ICC 2023
ISSN1938-1883
卷号2023-May
页码4385-4390
发表状态已发表
DOI10.1109/ICC45041.2023.10278850
摘要Meta-learning has earned its wide popularity to handle a family of similar tasks (e.g., classification of pets and wildlife) with elaborately trained meta-knowledge (e.g., shared network architecture and neural network parameter initialization). In this paper, we focus on the distributed training of meta-knowledge via server-device collaboration at the edge (i.e., distributed meta-learning). Notably, its practical implementation often runs into concerns like 1) time-varying unknown wireless dynamics (e.g., transmission latency); 2) device-side fair device involvement in distributed training; 3) server-side resource efficiency. To address such concerns, 1) we employ online learning to estimate the unknown dynamics and further exploit social ties among device users to accelerate online learning; 2) we utilize online control techniques to handle long-term fairness and resource constraints. By characterizing inter-user social ties as a social graph, we study distributed meta-learning from the perspective of constrained graphical bandits. Therefore, we propose a SoCial-awarE meta-kNowledge dispaTch (SCENT) algorithm by effectively integrating graphical bandit learning and online control. Besides a sublinear regret (i.e., loss of performance), SCENT also guarantees a well-trained meta-knowledge under within-budget resource consumption and fair device involvement. We conduct simulations to justify the outperformance of SCENT compared with baselines. © 2023 IEEE.
关键词Metalearning Training Wireless communication Performance evaluation Simulation Wildlife Neural networks
会议名称2023 IEEE International Conference on Communications, ICC 2023
会议地点Rome, Italy
会议日期28 May-1 June 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234815114432
EI主题词Network architecture
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/281927
专题信息科学与技术学院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shangshang Wang,Simeng Bian,Yinxu Tang,et al. Social-Aware Distributed Meta-Learning: A Perspective of Constrained Graphical Bandits[C]:Institute of Electrical and Electronics Engineers Inc.,2023:4385-4390.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Yinxu Tang]的文章
百度学术
百度学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Yinxu Tang]的文章
必应学术
必应学术中相似的文章
[Shangshang Wang]的文章
[Simeng Bian]的文章
[Yinxu Tang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。