| |||||||
ShanghaiTech University Knowledge Management System
High-throughput first-principle prediction of collinear magnetic topological materials | |
2022-12-27 | |
发表期刊 | NPJ COMPUTATIONAL MATERIALS (IF:9.4[JCR-2023],11.5[5-Year]) |
EISSN | 2057-3960 |
卷号 | 8期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41524-022-00954-w |
摘要 | The success of topological band theory and symmetry-based topological classification significantly advances our understanding of the Berry phase. Based on the critical concept of topological obstruction, efficient theoretical frameworks, including topological quantum chemistry and symmetry indicator theory, were developed, making a massive characterization of real materials possible. However, the classification of magnetic materials often involves the complexity of their unknown magnetic structures, which are often hard to know from experiments, thus, hindering the topological classification. In this paper, we design a high-throughput workflow to classify magnetic topological materials by automating the search for collinear magnetic structures and the characterization of their topological natures. We computed 1049 chosen transition-metal compounds (TMCs) without oxygen and identified 64 topological insulators and 53 semimetals, which become 73 and 26 when U correction is further considered. Due to the lack of magnetic structure information from experiments, our high-throughput predictions provide insightful reference results and make the step toward a complete diagnosis of magnetic topological materials. |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Technology Innovation Action Plan 2020-Integrated Circuit Technology Support Program[20DZ1100605] ; National Natural Science Foundation of China[11874263] ; Sino-German mobility program[M-0006] ; National Key R&D Program of China[2017YFE0131300] ; Science and Technology Commission of Shanghai Municipality (STCSM)[22ZR1441800] ; Shanghai-XFEL Beamline Project[31011505505885920161A2101001] |
WOS研究方向 | Chemistry ; Materials Science |
WOS类目 | Chemistry, Physical ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000905042400001 |
出版者 | NATURE PORTFOLIO |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/268671 |
专题 | 物质科学与技术学院_博士生 物质科学与技术学院 物质科学与技术学院_PI研究组_李刚组 物质科学与技术学院_特聘教授组_陈宇林 物质科学与技术学院_硕士生 物质科学与技术学院_公共科研平台_拓扑物理实验室 大科学中心_公共科研平台_大科学装置建设部 |
通讯作者 | Li, Gang |
作者单位 | 1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Ctr Transformat Sci, Shanghai 201210, Peoples R China 3.ShanghaiTech Univ, Shanghai High Repetit Rate XFEL & Extreme Light Fa, Shanghai 201210, Peoples R China 4.ShanghaiTech Univ, ShanghaiTech Lab Topol Phys, Shanghai 201210, Peoples R China 5.Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Peoples R China 6.Zhejiang Univ, Sch Phys, Hangzhou 310058, Peoples R China 7.Princeton Univ, Dept Phys, Princeton, NJ USA 8.Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Su, Yunlong,Hu, Jiayu,Cai, Xiaochan,et al. High-throughput first-principle prediction of collinear magnetic topological materials[J]. NPJ COMPUTATIONAL MATERIALS,2022,8(1). |
APA | Su, Yunlong.,Hu, Jiayu.,Cai, Xiaochan.,Shi, Wujun.,Xia, Yunyouyou.,...&Li, Gang.(2022).High-throughput first-principle prediction of collinear magnetic topological materials.NPJ COMPUTATIONAL MATERIALS,8(1). |
MLA | Su, Yunlong,et al."High-throughput first-principle prediction of collinear magnetic topological materials".NPJ COMPUTATIONAL MATERIALS 8.1(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。