Learning context-aware task reasoning for efficient meta-reinforcement learning
2020
会议录名称PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, AAMAS
ISSN1548-8403
卷号2020-May
页码1440-1448
发表状态已发表
DOI10.5555/3398761.3398927
摘要

Despite recent success of deep network-based Reinforcement Learning (RL), it remains elusive to achieve human-level efficiency in learning novel tasks. While previous efforts attempt to address this challenge using meta-learning strategies, they typically suffer from sampling inefficiency with on-policy RL algorithms or meta-overfitting with off-policy learning. In this work, we propose a novel meta-RL strategy to address those limitations. In particular, we decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment, instantiated with two deep network agents and a task encoder. During meta-training, our method learns a task-conditioned actor network for task-fulfillment, an explorer network with a self-supervised reward shaping that encourages task-informative experiences in task-exploration, and a context-aware graph-based task encoder for task inference. We validate our approach with extensive experiments on several public benchmarks and the results show that our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem. © 2020 International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS). All rights reserved.

会议录编者/会议主办者Auckland Tourism, Events and Economic Development ; AUT ; J.P. Morgan
关键词Graphic methods Deep learning Autonomous agents Learning systems Multi agent systems Efficiency Inference engines Signal encoding Learning context Meta learning strategy Meta-training Network-based Over fitting problem Policy learning Task inference Training and testing
会议名称19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
会议地点Virtual, Auckland, New zealand
会议日期May 19, 2020 - May 13, 2020
收录类别EI
语种英语
出版者International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
EI入藏号20204809553482
EI主题词Reinforcement learning
EISSN1558-2914
EI分类号461.4 Ergonomics and Human Factors Engineering ; 716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 723.4.1 Expert Systems ; 913.1 Production Engineering
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251842
专题信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
通讯作者He, Xuming
作者单位
ShanghaiTech University, Shanghai, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Haozhe,Zhou, Jiale,He, Xuming. Learning context-aware task reasoning for efficient meta-reinforcement learning[C]//Auckland Tourism, Events and Economic Development, AUT, J.P. Morgan:International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS),2020:1440-1448.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。