ShanghaiTech University Knowledge Management System
Automatic image registration of optoacoustic tomography and magnetic resonance imaging based on deep learning | |
2022 | |
会议录名称 | PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING |
ISSN | 0277-786X |
卷号 | 12461 |
发表状态 | 已发表 |
DOI | 10.1117/12.2655214 |
摘要 | Multi-spectral optoacoustic tomography (MSOT) combines rich contrast of optical imaging and high resolution of ultrasound, and becomes an attractive biomedical research tool in the last decade. Aligning MSOT images with anatomical map provided by magnetic resonance imaging (MRI) can potentially enhance the interpretation of optoacoustic signal which mainly reflects molecular and functional information. Therefore, developing an automated algorithm of image registration between MSOT and MRI is crucial. Existing MSOT-MRI registration algorithms mostly relied on manual segmentation, which requires user-dependent experience. Herein, we developed a fully automated algorithm for MSOT-MRI registration based on deep learning (DL). This workflow consists of DL-based segmentation and image transformation. We have experimentally demonstrated the accuracy and computational efficiency of the method, paving the way towards high-throughput MSOT data analysis in close future. © 2022 SPIE. All rights reserved. |
关键词 | Brain mapping Computational efficiency Deep learning Image enhancement Image registration Image segmentation Magnetism Photons Resonance Tomography Automated algorithms Automatic image registration Brain imaging Deep learning High resolution Images registration Imaging resolutions Multi-spectral Optical imaging Optoacoustic tomography |
会议名称 | 1st Conference on Biomedical Photonics and Cross-Fusion, BPC 2022 |
会议地点 | Shanghai, China |
会议日期 | August 21, 2022 - August 23, 2022 |
收录类别 | EI |
语种 | 英语 |
出版者 | SPIE |
EI入藏号 | 20224713137933 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1996-756X |
EI分类号 | 461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques ; 931.1 Mechanics ; 931.3 Atomic and Molecular Physics |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251430 |
专题 | 信息科学与技术学院_PI研究组_任无畏组 信息科学与技术学院_硕士生 |
通讯作者 | Ni, Ruiqing; Razansky, Daniel; Ren, Wuwei |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China; 2.Institute of Pharmacology and Toxicology, Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich; 8052, Switzerland; 3.Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich; 8093, Switzerland; 4.Institute for Regenerative Medicine, University of Zurich, Zurich; 8952, Switzerland |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Hu, Yexing,Lafci, Berkan,Luzgin, Artur,et al. Automatic image registration of optoacoustic tomography and magnetic resonance imaging based on deep learning[C]:SPIE,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。