Multi-Task Personalized Learning with Sparse Network Lasso
2022
会议录名称IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
ISSN1045-0823
页码3516-3522
发表状态已发表
摘要

Multi-task learning learns multiple related tasks together, in order to improve the generalization performance. Existing methods typically build a global model shared by all the samples, which saves the homogeneity but ignores the individuality (heterogeneity) of samples. Personalized learning is recently proposed to learn sample-specific local models by utilizing sample heterogeneity, however, directly applying it in the multi-task learning setting poses three key challenges: 1) model sample homogeneity, 2) prevent from overparameterization and 3) capture task correlations. In this paper, we propose a novel multi-task personalized learning method to handle these challenges. For 1), each model is decomposed into a sum of global and local components, that saves sample homogeneity and sample heterogeneity, respectively. For 2), regularized by sparse network Lasso, the joint models are embedded into a low-dimensional subspace and exhibit sparse group structures, leading to a significantly reduced number of effective parameters. For 3), the subspace is further separated into two parts, so as to save both commonality and specificity of tasks. We develop an alternating algorithm to solve the proposed optimization problem, and extensive experiments on various synthetic and real-world datasets demonstrate its robustness and effectiveness. © 2022 International Joint Conferences on Artificial Intelligence. All rights reserved.

会议录编者/会议主办者International Joint Conferences on Artifical Intelligence (IJCAI)
关键词Multi-task Learning Personalization and User Modeling Sparse Models
会议名称31st International Joint Conference on Artificial Intelligence, IJCAI 2022
会议地点Vienna, Austria
会议日期July 23, 2022 - July 29, 2022
收录类别EI
语种英语
出版者International Joint Conferences on Artificial Intelligence
EI入藏号20223812753015
EI主题词Learning systems
EI分类号723.4 Artificial Intelligence
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/232008
专题信息科学与技术学院_PI研究组_孙露组
信息科学与技术学院_硕士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Jiankun,Sun, Lu. Multi-Task Personalized Learning with Sparse Network Lasso[C]//International Joint Conferences on Artifical Intelligence (IJCAI):International Joint Conferences on Artificial Intelligence,2022:3516-3522.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
百度学术
百度学术中相似的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
必应学术
必应学术中相似的文章
[Wang, Jiankun]的文章
[Sun, Lu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Multi-Task Personalized Learning with Sparse Network Lasso.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。