Learning-based Local Path Planning for UAV in Unknown Environments
2022
会议录名称2022 EUROPEAN CONTROL CONFERENCE, ECC 2022
页码2056-2061
发表状态已发表
DOI10.23919/ECC55457.2022.9837997
摘要

This paper develops a novel learning-based local path planning method for Unmanned Aerial Vehicles (UAVs) in unknown environments. We establish a neural network (NN) with two fully connected hidden layers, where the distances from the UAV to the hit points of the locally detected obstacles, a strategic temporary goal and the direction to the final destination are selected as the input of the NN, and the reference velocity for the UAV to track is chosen as the output. To collect the training data, we propose a local path planning method, which repeatedly constructs a local Laplacian Potential Field (LPF) only based on the UAV's real-time obstacle detections of limited scope, and requires the UAV to track the negative gradient direction of the resulting potential function. Then, the UAV follows the reference velocity generated by the trained NN path planner to safely approach the final destination. Simulations demonstrate the effectiveness, adaptability, and efficiency of the proposed learning-based path planning method, which outperforms the above LPF-based path planning method and, unlike many other learning-based methods, does not need to re-train the NN parameters when changed to new maps. © 2022 EUCA.

关键词Aircraft detection Antennas Learning systems Motion planning Multilayer neural networks Obstacle detectors Aerial vehicle Hidden layers Laplacian potentials Local path-planning Neural-networks Path planning method Potential field Reference velocity Training data Unknown environments
会议名称2022 European Control Conference, ECC 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点London, United kingdom
会议日期July 12, 2022 - July 15, 2022
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
WOS研究方向Automation & Control Systems
WOS类目Automation & Control Systems
WOS记录号WOS:000857432300285
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20223512649059
EI主题词Unmanned aerial vehicles (UAV)
EI分类号652.1 Aircraft, General ; 716.2 Radar Systems and Equipment
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/223055
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_刘晓培组
信息科学与技术学院_PI研究组_陆疌组
通讯作者Lu, Jie
作者单位
Shanghaitech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Gao, Long,Song, Xiaocheng,Liu, Xiaopei,et al. Learning-based Local Path Planning for UAV in Unknown Environments[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:2056-2061.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Long]的文章
[Song, Xiaocheng]的文章
[Liu, Xiaopei]的文章
百度学术
百度学术中相似的文章
[Gao, Long]的文章
[Song, Xiaocheng]的文章
[Liu, Xiaopei]的文章
必应学术
必应学术中相似的文章
[Gao, Long]的文章
[Song, Xiaocheng]的文章
[Liu, Xiaopei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。