ShanghaiTech University Knowledge Management System
Learning-based Local Path Planning for UAV in Unknown Environments | |
2022 | |
会议录名称 | 2022 EUROPEAN CONTROL CONFERENCE, ECC 2022 |
页码 | 2056-2061 |
发表状态 | 已发表 |
DOI | 10.23919/ECC55457.2022.9837997 |
摘要 | This paper develops a novel learning-based local path planning method for Unmanned Aerial Vehicles (UAVs) in unknown environments. We establish a neural network (NN) with two fully connected hidden layers, where the distances from the UAV to the hit points of the locally detected obstacles, a strategic temporary goal and the direction to the final destination are selected as the input of the NN, and the reference velocity for the UAV to track is chosen as the output. To collect the training data, we propose a local path planning method, which repeatedly constructs a local Laplacian Potential Field (LPF) only based on the UAV's real-time obstacle detections of limited scope, and requires the UAV to track the negative gradient direction of the resulting potential function. Then, the UAV follows the reference velocity generated by the trained NN path planner to safely approach the final destination. Simulations demonstrate the effectiveness, adaptability, and efficiency of the proposed learning-based path planning method, which outperforms the above LPF-based path planning method and, unlike many other learning-based methods, does not need to re-train the NN parameters when changed to new maps. © 2022 EUCA. |
关键词 | Aircraft detection Antennas Learning systems Motion planning Multilayer neural networks Obstacle detectors Aerial vehicle Hidden layers Laplacian potentials Local path-planning Neural-networks Path planning method Potential field Reference velocity Training data Unknown environments |
会议名称 | 2022 European Control Conference, ECC 2022 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | London, United kingdom |
会议日期 | July 12, 2022 - July 15, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Automation & Control Systems |
WOS类目 | Automation & Control Systems |
WOS记录号 | WOS:000857432300285 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20223512649059 |
EI主题词 | Unmanned aerial vehicles (UAV) |
EI分类号 | 652.1 Aircraft, General ; 716.2 Radar Systems and Equipment |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/223055 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_刘晓培组 信息科学与技术学院_PI研究组_陆疌组 |
通讯作者 | Lu, Jie |
作者单位 | Shanghaitech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Gao, Long,Song, Xiaocheng,Liu, Xiaopei,et al. Learning-based Local Path Planning for UAV in Unknown Environments[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:2056-2061. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。