Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes
2022-01
发表期刊COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL (IF:4.4[JCR-2023],5.0[5-Year])
ISSN2001-0370
EISSN2001-0370
卷号20页码:3556-3566
发表状态已发表
DOI10.1016/j.csbj.2022.06.056
摘要

We developed a new computational method, Single-Cell Entropy Network (SCEN) to analyze single-cell RNA-seq data, which used the information of gene-gene associations to discover new heterogeneity of immune cells as well as identify existing cell types. Based on SCEN, we defined association-entropy (AE) for each cell and each gene through single-cell gene co-expression networks to measure the strength of association between each gene and all other genes at a single-cell resolution. Analyses of public datasets indicated that the AE of ribosomal protein genes (RP genes) varied greatly even in the same cell type of immune cells and the average AE of RP genes of immune cells in each person was significantly associated with the healthy/disease state of this person. Based on existing research and theory, we inferred that the AE of RP genes represented the heterogeneity of ribosomes and reflected the activity of immune cells. We believe SCEN can provide more biological insights into the heterogeneity and diversity of immune cells, especially the change of immune cells in the diseases. © 2022 The Author(s)

关键词Computation theory Association entropies Cytology Cell entropy Entropy Cell types Proteins Cell-based RNA Immune cells Ribosomal protein genes Single cells Single-cell entropy network Single-cell RNA-seq
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目National Key R&D Program of China[2017YFA0505500] ; Strategic Priority Research Pro- gram of the Chinese Academy of Sciences[XDB38040400] ; National Natural Science Foundation of China[
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS类目Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS记录号WOS:000831013000001
出版者Elsevier B.V.
EI入藏号20222912360394
EI主题词Genes
EI分类号461.2 Biological Materials and Tissue Engineering;461.9 Biology;641.1 Thermodynamics;721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory;804.1 Organic Compounds
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211733
专题生命科学与技术学院_硕士生
生命科学与技术学院_特聘教授组_陈洛南组
生命科学与技术学院_博士生
通讯作者Dai, Hao; Chen, Luonan
作者单位
1.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Ctr Excellence Mol Cell Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Guangdong Inst Intelligence Sci & Technol, Zhuhai 519031, Guangdong, Peoples R China
5.Univ Chinese Acad Sci, Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Biol, Hangzhou 310024, Peoples R China
6.Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Yueyang Rd 320, Shanghai 200031, Peoples R China
第一作者单位生命科学与技术学院
通讯作者单位生命科学与技术学院
推荐引用方式
GB/T 7714
Jin, Qiqi,Zuo, Chunman,Cui, Haoyue,et al. Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes[J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,2022,20:3556-3566.
APA Jin, Qiqi.,Zuo, Chunman.,Cui, Haoyue.,Li, Lin.,Yang, Yiwen.,...&Chen, Luonan.(2022).Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,20,3556-3566.
MLA Jin, Qiqi,et al."Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes".COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 20(2022):3556-3566.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jin, Qiqi]的文章
[Zuo, Chunman]的文章
[Cui, Haoyue]的文章
百度学术
百度学术中相似的文章
[Jin, Qiqi]的文章
[Zuo, Chunman]的文章
[Cui, Haoyue]的文章
必应学术
必应学术中相似的文章
[Jin, Qiqi]的文章
[Zuo, Chunman]的文章
[Cui, Haoyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。