Wireless Federated Learning over MIMO Networks: Joint Device Scheduling and Beamforming Design
2022
会议录名称2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2022
ISSN2164-7038
页码794-799
发表状态已发表
DOI10.1109/ICCWorkshops53468.2022.9814684
摘要Federated learning (FL) is recognized as a key enabling technology to support distributed artificial intelligence (AI) services in future 6G. By supporting decentralized data training and collaborative model training among devices, FL inherently tames privacy leakage and reduces transmission costs. Whereas, the performance of the wireless FL is typically restricted by the communication latency. Multiple-input multiple-output (MIMO) technique is one promising solution to build up a communication-efficient edge FL system with limited radio resources. In this paper, we propose a novel joint device scheduling and receive beamforming design approach to reduce the FL convergence gap over shared wireless MIMO networks. Specifically, we theoretically establish the convergence analysis of the FL process, and then apply the proposed device scheduling policy to maximize the number of weighted devices under the FL system latency and sum power constraints. Numerical results verify the theoretical analysis of the FL convergence and exhibit the appealing learning performance of the proposed approach. © 2022 IEEE.
关键词MIMO systems Scheduling Decentralised Device scheduling Distributed Artificial Intelligence Enabling technologies Federated learning system Intelligence services Learning convergence Multiple inputs Multiple outputs Output network
会议名称2022 IEEE International Conference on Communications Workshops, ICC Workshops 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Seoul, Korea, Republic of
会议日期May 16, 2022 - May 20, 2022
URL查看原文
收录类别CPCI-S ; EI ; CPCI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000848467200133
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20223012414054
EI主题词Beamforming
EI分类号711.2 Electromagnetic Waves in Relation to Various Structures - 912.2 Management
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211722
专题信息科学与技术学院_PI研究组_廉黎祥组
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_毛奕婕组
通讯作者Huang, Shaoming; Zhang, Pengfei; Mao, Yijie; Lian, Lixiang; Wu, Youlong; Shi, Yuanming
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Huang, Shaoming,Zhang, Pengfei,Mao, Yijie,et al. Wireless Federated Learning over MIMO Networks: Joint Device Scheduling and Beamforming Design[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:794-799.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Shaoming]的文章
[Zhang, Pengfei]的文章
[Mao, Yijie]的文章
百度学术
百度学术中相似的文章
[Huang, Shaoming]的文章
[Zhang, Pengfei]的文章
[Mao, Yijie]的文章
必应学术
必应学术中相似的文章
[Huang, Shaoming]的文章
[Zhang, Pengfei]的文章
[Mao, Yijie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICCWorkshops53468.2022.9814684.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。