ShanghaiTech University Knowledge Management System
Wireless Federated Learning over MIMO Networks: Joint Device Scheduling and Beamforming Design | |
2022 | |
会议录名称 | 2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2022 |
ISSN | 2164-7038 |
页码 | 794-799 |
发表状态 | 已发表 |
DOI | 10.1109/ICCWorkshops53468.2022.9814684 |
摘要 | Federated learning (FL) is recognized as a key enabling technology to support distributed artificial intelligence (AI) services in future 6G. By supporting decentralized data training and collaborative model training among devices, FL inherently tames privacy leakage and reduces transmission costs. Whereas, the performance of the wireless FL is typically restricted by the communication latency. Multiple-input multiple-output (MIMO) technique is one promising solution to build up a communication-efficient edge FL system with limited radio resources. In this paper, we propose a novel joint device scheduling and receive beamforming design approach to reduce the FL convergence gap over shared wireless MIMO networks. Specifically, we theoretically establish the convergence analysis of the FL process, and then apply the proposed device scheduling policy to maximize the number of weighted devices under the FL system latency and sum power constraints. Numerical results verify the theoretical analysis of the FL convergence and exhibit the appealing learning performance of the proposed approach. © 2022 IEEE. |
关键词 | MIMO systems Scheduling Decentralised Device scheduling Distributed Artificial Intelligence Enabling technologies Federated learning system Intelligence services Learning convergence Multiple inputs Multiple outputs Output network |
会议名称 | 2022 IEEE International Conference on Communications Workshops, ICC Workshops 2022 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Seoul, Korea, Republic of |
会议日期 | May 16, 2022 - May 20, 2022 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000848467200133 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20223012414054 |
EI主题词 | Beamforming |
EI分类号 | 711.2 Electromagnetic Waves in Relation to Various Structures - 912.2 Management |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211722 |
专题 | 信息科学与技术学院_PI研究组_廉黎祥组 信息科学与技术学院_PI研究组_吴幼龙组 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_毛奕婕组 |
通讯作者 | Huang, Shaoming; Zhang, Pengfei; Mao, Yijie; Lian, Lixiang; Wu, Youlong; Shi, Yuanming |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Huang, Shaoming,Zhang, Pengfei,Mao, Yijie,et al. Wireless Federated Learning over MIMO Networks: Joint Device Scheduling and Beamforming Design[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:794-799. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。