Decentralized Statistical Inference with Unrolled Graph Neural Networks
2022-02-01
会议录名称2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC)
ISSN0743-1546
发表状态已发表
DOI10.1109/CDC45484.2021.9682857
摘要

In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination. Existing optimization-based algorithms suffer from issues of model mismatches and poor convergence speed, and thus their performance would be degraded provided that the number of communication rounds is limited. This motivates us to propose a learning-based framework, which unrolls well-noted decentralized optimization algorithms (e.g., Prox-DGD and PG-EXTRA) into graph neural networks (GNNs). By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue. Our convergence analysis (with PG-EXTRA as the base algorithm) reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent. The simulation results demonstrate that the proposed GNN-based learning methods prominently outperform several state-of-the-art optimization-based algorithms in convergence speed and recovery error.

关键词Decentralized optimization graph neural networks algorithm unrolling interpretable deep learning
会议名称60th IEEE Conference on Decision and Control (CDC)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,null,ELECTR NETWORK
会议日期DEC 13-17, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[61603254] ; Hong Kong Research Grant Council[16210719]
WOS研究方向Automation & Control Systems ; Engineering
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000781990302062
出版者IEEE
EI入藏号暂无
来源库IEEE
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183544
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_陆疌组
通讯作者Lu, Jie
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
4.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
5.Microsoft Res Asia, Shanghai, Peoples R China
6.Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, He,Shen, Yifei,Wang, Ziyuan,et al. Decentralized Statistical Inference with Unrolled Graph Neural Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, He]的文章
[Shen, Yifei]的文章
[Wang, Ziyuan]的文章
百度学术
百度学术中相似的文章
[Wang, He]的文章
[Shen, Yifei]的文章
[Wang, Ziyuan]的文章
必应学术
必应学术中相似的文章
[Wang, He]的文章
[Shen, Yifei]的文章
[Wang, Ziyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。