ShanghaiTech University Knowledge Management System
Decentralized Statistical Inference with Unrolled Graph Neural Networks | |
2022-02-01 | |
会议录名称 | 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC)
![]() |
ISSN | 0743-1546 |
发表状态 | 已发表 |
DOI | 10.1109/CDC45484.2021.9682857 |
摘要 | In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination. Existing optimization-based algorithms suffer from issues of model mismatches and poor convergence speed, and thus their performance would be degraded provided that the number of communication rounds is limited. This motivates us to propose a learning-based framework, which unrolls well-noted decentralized optimization algorithms (e.g., Prox-DGD and PG-EXTRA) into graph neural networks (GNNs). By minimizing the recovery error via end-to-end training, this learning-based framework resolves the model mismatch issue. Our convergence analysis (with PG-EXTRA as the base algorithm) reveals that the learned model parameters may accelerate the convergence and reduce the recovery error to a large extent. The simulation results demonstrate that the proposed GNN-based learning methods prominently outperform several state-of-the-art optimization-based algorithms in convergence speed and recovery error. |
关键词 | Decentralized optimization graph neural networks algorithm unrolling interpretable deep learning |
会议名称 | 60th IEEE Conference on Decision and Control (CDC) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | DEC 13-17, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61603254] ; Hong Kong Research Grant Council[16210719] |
WOS研究方向 | Automation & Control Systems ; Engineering |
WOS类目 | Automation & Control Systems ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000781990302062 |
出版者 | IEEE |
EI入藏号 | 暂无 |
来源库 | IEEE |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183544 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_陆疌组 |
通讯作者 | Lu, Jie |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China 4.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China 5.Microsoft Res Asia, Shanghai, Peoples R China 6.Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, He,Shen, Yifei,Wang, Ziyuan,et al. Decentralized Statistical Inference with Unrolled Graph Neural Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。