ShanghaiTech University Knowledge Management System
Patch-Set-Based Representation for Alignment-Free Image Set Classification | |
2016-09 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year]) |
ISSN | 1051-8215 |
卷号 | 26期号:9页码:1646-1658 |
发表状态 | 已发表 |
DOI | 10.1109/TCSVT.2015.2469571 |
摘要 | This paper presents a patch-set-based sparse representation for image set classification. Compared with image-based image set representation, our patch-set-based representation is alignment free and thus has an advantage for tasks like video-based face recognition, image-set-based object recognition, and video-based hand gesture recognition, where precious alignment is usually difficult or even impossible due to large variance in view angle or pose. Specifically, to bypass the alignment issue, we propose to adopt the patch-based image set representation by dividing each image within each set into patches, then we cluster all the training patches into multiple clusters and classify the test patches based on the cluster centers of training patches. The labels of test patches within each cluster are inferred from a patch-set-based sparse representation for classification, and the labels of all test patches from all the clusters are then aggregated to predict a single label for the test set. Experimental results on video-based face recognition data sets (CMU-MoBo and YouTube Celebrities), image-set-based object recognition data set (ETH-80), and video-based hand gesture recognition data set (Kinect Hand Gestures) demonstrate that our proposed method consistently outperforms all existing ones, and the improvement is very significant on the YouTube Celebrities and Kinect Hand Gesture data sets. Moreover, we also quantitatively show the robustness of our method to misalignment on the Mutli-PIE data set. |
关键词 | Alignment free image set classification patch-set-based representation video-based face recognition |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61502304] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:000384078400006 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20163702808409 |
EI主题词 | Alignment ; Classification (of information) ; Face recognition ; Gesture recognition ; Object recognition ; Optical character recognition ; Palmprint recognition |
EI分类号 | Mechanical Devices:601.1 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Light/Optics:741.1 |
WOS关键词 | FACE RECOGNITION ; APPEARANCE |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/1720 |
专题 | 信息科学与技术学院_PI研究组_高盛华组 |
作者单位 | 1.ShanghaiTech University, Shanghai, China 2.Advanced Digital Sciences Center, Singapore 3.University of Macau, Macau, China 4.MediaTek Inc., Hsinchu, Taiwan 5.Nanjing University of Science and Technology, Nanjing, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Shenghua Gao,Zinan Zeng,Kui Jia,et al. Patch-Set-Based Representation for Alignment-Free Image Set Classification[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2016,26(9):1646-1658. |
APA | Shenghua Gao,Zinan Zeng,Kui Jia,Tsung-Han Chan,&Jinhui Tang.(2016).Patch-Set-Based Representation for Alignment-Free Image Set Classification.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,26(9),1646-1658. |
MLA | Shenghua Gao,et al."Patch-Set-Based Representation for Alignment-Free Image Set Classification".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26.9(2016):1646-1658. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Shenghua Gao]的文章 |
[Zinan Zeng]的文章 |
[Kui Jia]的文章 |
百度学术 |
百度学术中相似的文章 |
[Shenghua Gao]的文章 |
[Zinan Zeng]的文章 |
[Kui Jia]的文章 |
必应学术 |
必应学术中相似的文章 |
[Shenghua Gao]的文章 |
[Zinan Zeng]的文章 |
[Kui Jia]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。