ShanghaiTech University Knowledge Management System
PSTO: Learning Energy-Efficient Locomotion for Quadruped Robots | |
2022-03 | |
发表期刊 | MACHINES
![]() |
EISSN | 2075-1702 |
卷号 | 10期号:3 |
发表状态 | 已发表 |
DOI | 10.3390/machines10030185 |
摘要 | Energy efficiency is critical for the locomotion of quadruped robots. However, energy efficiency values found in simulations do not transfer adequately to the real world. To address this issue, we present a novel method, named Policy Search Transfer Optimization (PSTO), which combines deep reinforcement learning and optimization to create energy-efficient locomotion for quadruped robots in the real world. The deep reinforcement learning and policy search process are performed by the TD3 algorithm and the policy is transferred to the open-loop control trajectory further optimized by numerical methods, and conducted on the robot in the real world. In order to ensure the high uniformity of the simulation results and the behavior of the hardware platform, we introduce and validate the accurate model in simulation including consistent size and fine-tuning parameters. We then validate those results with real-world experiments on the quadruped robot Ant by executing dynamic walking gaits with different leg lengths and numbers of amplifications. We analyze the results and show that our methods can outperform the control method provided by the state-of-the-art policy search algorithm TD3 and sinusoid function on both energy efficiency and speed. |
关键词 | machine learning robot locomotion energy efficiency deep reinforcement learning |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61850410527] ; Shanghai Young Oriental Scholars Grant[0830000081] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic ; Engineering, Mechanical |
WOS记录号 | WOS:000775037200001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/171471 |
专题 | 信息科学与技术学院_PI研究组_ANDRE LUIS MACEDO ROSENDO SILVA组 |
通讯作者 | Rosendo, Andre |
作者单位 | ShanghaiTech Univ, Sch Informat Sci & Technol, Living Machines Lab, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhu, Wangshu,Rosendo, Andre. PSTO: Learning Energy-Efficient Locomotion for Quadruped Robots[J]. MACHINES,2022,10(3). |
APA | Zhu, Wangshu,&Rosendo, Andre.(2022).PSTO: Learning Energy-Efficient Locomotion for Quadruped Robots.MACHINES,10(3). |
MLA | Zhu, Wangshu,et al."PSTO: Learning Energy-Efficient Locomotion for Quadruped Robots".MACHINES 10.3(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhu, Wangshu]的文章 |
[Rosendo, Andre]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhu, Wangshu]的文章 |
[Rosendo, Andre]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhu, Wangshu]的文章 |
[Rosendo, Andre]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。