ShanghaiTech University Knowledge Management System
Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks | |
2017 | |
会议录名称 | 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) |
ISSN | 2334-3303 |
卷号 | PP |
期号 | 99 |
页码 | 4629 - 4636 |
发表状态 | 已发表 |
DOI | 10.1109/TAC.2019.2901829 |
摘要 | To date, a large collection of distributed algorithms for convex multi-agent optimization have been reported, yet only few of them converge to an optimal solution at guaranteed rates when the topologies of the agent networks are time-varying. Motivated by this, we develop a family of distributed Fenchel dual gradient methods for solving strongly convex yet non-smooth multi-agent optimization problems with nonidentical local constraints over time-varying networks. The proposed algorithms are constructed based on the application of weighted gradient methods to the Fenchel dual of the multiagent optimization problem. They are able to drive all the agents to dual optimality at an O(1/k) rate and to primal optimality at an O(1/root k) rate under a standard network connectivity condition. The competent convergence performance of the Fenchel dual gradient methods is demonstrated via numerical examples. |
关键词 | Gradient methods Convergence Convex functions Standards Linear programming |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Melbourne, VIC |
会议日期 | 12-15 Dec. 2017 |
URL | 查看原文 |
收录类别 | SCI ; EI ; CPCI ; SCIE |
语种 | 英语 |
资助项目 | Natural Science Foundation of Shanghai[16ZR1422500] |
WOS研究方向 | Automation & Control Systems ; Engineering |
WOS类目 | Automation & Control Systems ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000424696902127 |
出版者 | IEEE |
EI入藏号 | 20181805132494 |
EI主题词 | Convergence of numerical methods ; Convex optimization ; Gradient methods ; Multi agent systems |
EI分类号 | Electric Networks:703.1 ; Numerical Methods:921.6 |
WOS关键词 | MODEL-PREDICTIVE CONTROL ; RESOURCE-ALLOCATION ; 1ST-ORDER METHODS ; DIRECTED-GRAPHS ; ALGORITHM ; CONSENSUS ; DECOMPOSITION |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/16323 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_陆疌组 信息科学与技术学院_博士生 |
通讯作者 | Jie Lu |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xuyang Wu,Jie Lu. Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:4629 - 4636. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xuyang Wu]的文章 |
[Jie Lu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xuyang Wu]的文章 |
[Jie Lu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xuyang Wu]的文章 |
[Jie Lu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。