ShanghaiTech University Knowledge Management System
Online Multiple Object Tracking with Cross-Task Synergy | |
2021 | |
会议录名称 | 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR46437.2021.00804 |
摘要 | Modern online multiple object tracking (MOT) methods usually focus on two directions to improve tracking performance. One is to predict new positions in an incoming frame based on tracking information from previous frames, and the other is to enhance data association by generating more discriminative identity embeddings. Some works combined both directions within one framework but handled them as two individual tasks, thus gaining little mutual benefits. In this paper, we propose a novel unified model with synergy between position prediction and embedding association. The two tasks are linked by temporal-aware target attention and distractor attention, as well as identity-aware memory aggregation model. Specifically, the attention modules can make the prediction focus more on targets and less on distractors, therefore more reliable embeddings can be extracted accordingly for association. On the other hand, such reliable embeddings can boost identity-awareness through memory aggregation, hence strengthen attention modules and suppress drifts. In this way, the synergy between position prediction and embedding association is achieved, which leads to strong robustness to occlusions. Extensive experiments demonstrate the superiority of our proposed model over a wide range of existing methods on MOTChallenge benchmarks. Our code and models are publicly available at https://github.com/songguocod/TADAM. |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | JUN 19-25, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
语种 | 英语 |
资助项目 | Australian Research Council["FL-170100117","DP-180103424","IH-180100002","IC-190100031"] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000739917308036 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153575 |
专题 | 信息科学与技术学院_PI研究组_汪婧雅组 |
通讯作者 | Guo, Song; Wang, Jingya |
作者单位 | 1.Univ Sydney, Sydney, NSW, Australia 2.ShanghaiTech Univ, Shanghai, Peoples R China 3.Natl Univ Singapore, Singapore, Singapore 4.Stevens Inst Technol, Hoboken, NJ 07030 USA |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Guo, Song,Wang, Jingya,Wang, Xinchao,et al. Online Multiple Object Tracking with Cross-Task Synergy[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。