Online Multiple Object Tracking with Cross-Task Synergy
2021
会议录名称2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR46437.2021.00804
摘要Modern online multiple object tracking (MOT) methods usually focus on two directions to improve tracking performance. One is to predict new positions in an incoming frame based on tracking information from previous frames, and the other is to enhance data association by generating more discriminative identity embeddings. Some works combined both directions within one framework but handled them as two individual tasks, thus gaining little mutual benefits. In this paper, we propose a novel unified model with synergy between position prediction and embedding association. The two tasks are linked by temporal-aware target attention and distractor attention, as well as identity-aware memory aggregation model. Specifically, the attention modules can make the prediction focus more on targets and less on distractors, therefore more reliable embeddings can be extracted accordingly for association. On the other hand, such reliable embeddings can boost identity-awareness through memory aggregation, hence strengthen attention modules and suppress drifts. In this way, the synergy between position prediction and embedding association is achieved, which leads to strong robustness to occlusions. Extensive experiments demonstrate the superiority of our proposed model over a wide range of existing methods on MOTChallenge benchmarks. Our code and models are publicly available at https://github.com/songguocod/TADAM.
会议名称IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点null,null,ELECTR NETWORK
会议日期JUN 19-25, 2021
URL查看原文
收录类别CPCI-S ; EI ; CPCI
语种英语
资助项目Australian Research Council["FL-170100117","DP-180103424","IH-180100002","IC-190100031"]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000739917308036
出版者IEEE COMPUTER SOC
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153575
专题信息科学与技术学院_PI研究组_汪婧雅组
通讯作者Guo, Song; Wang, Jingya
作者单位
1.Univ Sydney, Sydney, NSW, Australia
2.ShanghaiTech Univ, Shanghai, Peoples R China
3.Natl Univ Singapore, Singapore, Singapore
4.Stevens Inst Technol, Hoboken, NJ 07030 USA
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Guo, Song,Wang, Jingya,Wang, Xinchao,et al. Online Multiple Object Tracking with Cross-Task Synergy[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Song]的文章
[Wang, Jingya]的文章
[Wang, Xinchao]的文章
百度学术
百度学术中相似的文章
[Guo, Song]的文章
[Wang, Jingya]的文章
[Wang, Xinchao]的文章
必应学术
必应学术中相似的文章
[Guo, Song]的文章
[Wang, Jingya]的文章
[Wang, Xinchao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR46437.2021.00804.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。