ShanghaiTech University Knowledge Management System
Green Edge Intelligence Scheme for Mobile Keyboard Emoji Prediction | |
2021-06-01 | |
发表期刊 | IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS |
ISSN | 1550-3607 |
EISSN | 1558-0660 |
卷号 | 23期号:2页码:1888-1901 |
发表状态 | 已发表 |
DOI | 10.1109/ICC42927.2021.9500534 |
摘要 | Emoji prediction has been widely adopted in most mobile keyboards to improve the quality of user experience. Considering the energy limitations of smartphones, it is promising to consider deploying pre-trained prediction models on edge servers, with which smartphones can carry out emoji prediction in an online fashion. However, given a limited connection capacity, a key issue under such a scheme lies in how each smartphone should select a subset of models to achieve high-accuracy and real-time emoji prediction with energy efficiency (a.k.a. the model selection problem). Moreover, part of the system dynamics such as the accuracy and the latency of individual models are usually unknown a priori in practice, further complicating the problem. In this paper, with an effective integration of history-aware online learning and online control, we propose the first green edge intelligence scheme to solve the model selection problem for edge-assisted mobile keyboard emoji prediction. Our theoretical analysis and simulation results verify the effectiveness of our proposed scheme in achieving a sublinear regret bound and energy efficiency with high accuracy and low latency. © 2021 IEEE. |
关键词 | Energy efficiency Forecasting Green computing Connection capacity Edge intelligence Edge server Energy limitations High accuracy Model selection problem On line fashion Prediction modelling Smart phones Users' experiences |
URL | 查看原文 |
收录类别 | EI ; SCI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | Nature Science Foundation of Shanghai[19ZR1433900] |
WOS研究方向 | Telecommunications |
WOS类目 | Telecommunications |
WOS记录号 | WOS:000719386001134 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20213910951413 |
EI主题词 | Smartphones |
EI分类号 | 454 Environmental Engineering ; 525.2 Energy Conservation ; 718.1 Telephone Systems and Equipment |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133513 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_博士生 |
通讯作者 | Shao, Ziyu |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Ant Grp, Shanghai 200120, Peoples R China 3.Shenzhen Inst Artificial Intellegence & Robot Soc, Shenzhen 518000, Peoples R China 4.Terminus Grp, Beijing 100027, Peoples R China 5.Peng Cheng Lab, Shenzhen 518055, Peoples R China 6.Shenzhen SmartC Technol Dev Grp Co Ltd, Shenzhen 518046, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Tang, Yinxu,Hou, Jianfeng,Huang, Xi,et al. Green Edge Intelligence Scheme for Mobile Keyboard Emoji Prediction[J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS,2021,23(2):1888-1901. |
APA | Tang, Yinxu,Hou, Jianfeng,Huang, Xi,Shao, Ziyu,&Yang, Yang.(2021).Green Edge Intelligence Scheme for Mobile Keyboard Emoji Prediction.IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS,23(2),1888-1901. |
MLA | Tang, Yinxu,et al."Green Edge Intelligence Scheme for Mobile Keyboard Emoji Prediction".IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS 23.2(2021):1888-1901. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。