| |||||||
ShanghaiTech University Knowledge Management System
A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene | |
2021-10 | |
发表期刊 | MACHINES (IF:2.1[JCR-2023],2.2[5-Year]) |
EISSN | 2075-1702 |
卷号 | 9期号:10 |
DOI | 10.3390/machines9100230 |
摘要 | This paper addresses the problem of instance-level 6DoF pose estimation from a single RGBD image in an indoor scene. Many recent works have shown that a two-stage network, which first detects the keypoints and then regresses the keypoints for 6d pose estimation, achieves remarkable performance. However, the previous methods concern little about channel-wise attention and the keypoints are not selected by comprehensive use of RGBD information, which limits the performance of the network. To enhance RGB feature representation ability, a modular Split-Attention block that enables attention across feature-map groups is proposed. In addition, by combining the Oriented FAST and Rotated BRIEF (ORB) keypoints and the Farthest Point Sample (FPS) algorithm, a simple but effective keypoint selection method named ORB-FPS is presented to avoid the keypoints appear on the non-salient regions. The proposed algorithm is tested on the Linemod and the YCB-Video dataset, the experimental results demonstrate that our method outperforms the current approaches, achieves ADD(S) accuracy of 94.5% on the Linemod dataset and 91.4% on the YCB-Video dataset. |
关键词 | 6DoF pose estimation split-channel attention ORB-FPS keypoint |
URL | 查看原文 |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic ; Engineering, Mechanical |
WOS记录号 | WOS:000713310800001 |
出版者 | MDPI |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128596 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_特聘教授组_孙胜利组 |
通讯作者 | Sun, Shengli |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China; 2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China; 3.Chinese Acad Sci, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China; 4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Huikai,Liu, Gaorui,Zhang, Yue,et al. A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene[J]. MACHINES,2021,9(10). |
APA | Liu, Huikai.,Liu, Gaorui.,Zhang, Yue.,Lei, Linjian.,Xie, Hui.,...&Sun, Shengli.(2021).A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene.MACHINES,9(10). |
MLA | Liu, Huikai,et al."A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene".MACHINES 9.10(2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。