消息
×
loading..
A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene
2021-10
发表期刊MACHINES (IF:2.1[JCR-2023],2.2[5-Year])
EISSN2075-1702
卷号9期号:10
DOI10.3390/machines9100230
摘要This paper addresses the problem of instance-level 6DoF pose estimation from a single RGBD image in an indoor scene. Many recent works have shown that a two-stage network, which first detects the keypoints and then regresses the keypoints for 6d pose estimation, achieves remarkable performance. However, the previous methods concern little about channel-wise attention and the keypoints are not selected by comprehensive use of RGBD information, which limits the performance of the network. To enhance RGB feature representation ability, a modular Split-Attention block that enables attention across feature-map groups is proposed. In addition, by combining the Oriented FAST and Rotated BRIEF (ORB) keypoints and the Farthest Point Sample (FPS) algorithm, a simple but effective keypoint selection method named ORB-FPS is presented to avoid the keypoints appear on the non-salient regions. The proposed algorithm is tested on the Linemod and the YCB-Video dataset, the experimental results demonstrate that our method outperforms the current approaches, achieves ADD(S) accuracy of 94.5% on the Linemod dataset and 91.4% on the YCB-Video dataset.

关键词6DoF pose estimation split-channel attention ORB-FPS keypoint
URL查看原文
收录类别SCIE
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic ; Engineering, Mechanical
WOS记录号WOS:000713310800001
出版者MDPI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128596
专题信息科学与技术学院_博士生
信息科学与技术学院_特聘教授组_孙胜利组
通讯作者Sun, Shengli
作者单位
1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China;
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China;
3.Chinese Acad Sci, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China;
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Liu, Huikai,Liu, Gaorui,Zhang, Yue,et al. A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene[J]. MACHINES,2021,9(10).
APA Liu, Huikai.,Liu, Gaorui.,Zhang, Yue.,Lei, Linjian.,Xie, Hui.,...&Sun, Shengli.(2021).A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene.MACHINES,9(10).
MLA Liu, Huikai,et al."A 3D Keypoints Voting Network for 6DoF Pose Estimation in Indoor Scene".MACHINES 9.10(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Huikai]的文章
[Liu, Gaorui]的文章
[Zhang, Yue]的文章
百度学术
百度学术中相似的文章
[Liu, Huikai]的文章
[Liu, Gaorui]的文章
[Zhang, Yue]的文章
必应学术
必应学术中相似的文章
[Liu, Huikai]的文章
[Liu, Gaorui]的文章
[Zhang, Yue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@machines9100230.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。