Editable Free-Viewpoint Video using a Layered Neural Representation
2021-08
发表期刊ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year])
ISSN0730-0301
EISSN1557-7368
卷号40期号:4
发表状态已发表
DOI10.1145/3450626.3459756
摘要

Generating free-viewpoint videos is critical for immersive VR/AR experience, but recent neural advances still lack the editing ability to manipulate the visual perception for large dynamic scenes. To fill this gap, in this paper, we propose the first approach for editable free-viewpoint video generation for large-scale view-dependent dynamic scenes using only 16 cameras. The core of our approach is a new layered neural representation, where each dynamic entity, including the environment itself, is formulated into a spatiotemporal coherent neural layered radiance representation called ST-NeRF. Such a layered representation supports manipulations of the dynamic scene while still supporting a wide free viewing experience. In our ST-NeRF, we represent the dynamic entity/layer as a continuous function, which achieves the disentanglement of location, deformation as well as the appearance of the dynamic entity in a continuous and self-supervised manner. We propose a scene parsing 4D label map tracking to disentangle the spatial information explicitly and a continuous deform module to disentangle the temporal motion implicitly. An object-aware volume rendering scheme is further introduced for the re-assembling of all the neural layers. We adopt a novel layered loss and motion-aware ray sampling strategy to enable efficient training for a large dynamic scene with multiple performers, Our framework further enables a variety of editing functions, i.e., manipulating the scale and location, duplicating or retiming individual neural layers to create numerous visual effects while preserving high realism. Extensive experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.

关键词free-viewpoint video novel view syntheis neural rendering visual editing neural representation dynamic scene modeling Volume rendering Continuous functions Free viewpoint video Layered representation Neural representations Photo realistic Sampling strategies Spatial informations Visual perception
收录类别SCIE ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000674930900113
出版者ASSOC COMPUTING MACHINERY
EI入藏号20213110694900
EI主题词Motion tracking
EI分类号723.2 Data Processing and Image Processing
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127998
专题信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
通讯作者Xu, Lan; Yu, Jingyi
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China;
2.Stereye Intelligent Technol Co Ltd, Shanghai, Peoples R China;
3.DGene Digital Technol Co Ltd, Pudong, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Jiakai,Liu, Xinhang,Ye, Xinyi,et al. Editable Free-Viewpoint Video using a Layered Neural Representation[J]. ACM TRANSACTIONS ON GRAPHICS,2021,40(4).
APA Zhang, Jiakai.,Liu, Xinhang.,Ye, Xinyi.,Zhao, Fuqiang.,Zhang, Yanshun.,...&Yu, Jingyi.(2021).Editable Free-Viewpoint Video using a Layered Neural Representation.ACM TRANSACTIONS ON GRAPHICS,40(4).
MLA Zhang, Jiakai,et al."Editable Free-Viewpoint Video using a Layered Neural Representation".ACM TRANSACTIONS ON GRAPHICS 40.4(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
[Ye, Xinyi]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
[Ye, Xinyi]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
[Ye, Xinyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。