| |||||||
ShanghaiTech University Knowledge Management System
Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography | |
2020-09 | |
发表期刊 | SENSORS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 1424-8220 |
卷号 | 20期号:17页码:4890 |
发表状态 | 已发表 |
DOI | 10.3390/s20174890 |
摘要 | Surface electromyogram (EMG) is a noninvasive measure of muscle electrical activity and has been widely used in a variety of applications. When recorded from the trunk, surface EMG can be contaminated by the cardiac electrical activity, i.e., the electrocardiogram (ECG). ECG may distort the desired EMG signal, complicating the extraction of reliable information from the trunk EMG. Several methods are available for ECG removal from the trunk EMG, but a comparative assessment of the performance of these methods is lacking, limiting the possibility of selecting a suitable method for specific applications. The aim of the present study is therefore to review and compare the performance of different ECG removal methods from the trunk EMG. To this end, a synthetic dataset was generated by combining in vivo EMG signals recorded on the biceps brachii and healthy or dysrhythmia ECG data from the Physionet database with a predefined signal-to-noise ratio. Gating, high-pass filtering, template subtraction, wavelet transform, adaptive filtering, and blind source separation were implemented for ECG removal. A robust measure of Kurtosis, i.e.,KR2and two EMG features, the average rectified value (ARV), and mean frequency (MF), were then calculated from the processed EMG signals and compared with the EMG before mixing. Our results indicate template subtraction to produce the lowest root mean square error in both ARV and MF, providing useful insight for the selection of a suitable ECG removal method. |
关键词 | trunk electromyography electrocardiography interference template subtraction adaptive filter wavelet blind source separation |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Chemistry ; Engineering ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:000571640800001 |
出版者 | MDPI |
EI入藏号 | 20203509116804 |
EI主题词 | Adaptive filtering ; Adaptive filters ; Blind source separation ; Electrocardiography ; High pass filters ; Mean square error ; Signal to noise ratio ; Wavelet transforms |
EI分类号 | Medicine and Pharmacology:461.6 ; Electric Filters:703.2 ; Information Theory and Signal Processing:716.1 ; Mathematical Transformations:921.3 ; Mathematical Statistics:922.2 |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/123605 |
专题 | 信息科学与技术学院_PI研究组_徐林组 |
通讯作者 | Xu, Lin |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China; 2.Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands; 3.Philips Res, NL-5656 AE Eindhoven, Netherlands; 4.Clin Phys Dept Kempenhaeghe, NL-6532 SZ Nijmegen, Netherlands |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu, Lin,Peri, Elisabetta,Vullings, Rik,et al. Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography[J]. SENSORS,2020,20(17):4890. |
APA | Xu, Lin,Peri, Elisabetta,Vullings, Rik,Rabotti, Chiara,Van Dijk, Johannes P.,&Mischi, Massimo.(2020).Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography.SENSORS,20(17),4890. |
MLA | Xu, Lin,et al."Comparative Review of the Algorithms for Removal of Electrocardiographic Interference from Trunk Electromyography".SENSORS 20.17(2020):4890. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。