ShanghaiTech University Knowledge Management System
An Efficient Distributed Deep Learning Framework for Fog-Based IoT Systems | |
2019-12 | |
会议录名称 | 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
![]() |
ISSN | 1930-529X |
页码 | 1-6 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM38437.2019.9014056 |
摘要 | Deep neural networks (DNNs) are the key techniques to enable edge/fog intelligence. By far, it remains challenging to conduct distributed deployment of DNN models onto resource-constrained fog nodes with low latency. Existing solutions adopt either model compression techniques to reduce the computation loads on fog nodes, or horizontal model partition techniques, which exploit particular communication and computation patterns to partition different layers of DNNs onto fog nodes. Nonetheless, sometimes even resource demands of particular layers can be unaffordable to fog nodes, which makes horizontal partition inadequate and calls for the joint design of vertical and horizontal model partition. Besides, model partition and compression may lead to degraded inference accuracy, but approaches to compensate such accuracy loss remain unexplored.In this paper, we propose an integrated efficient distributed deep learning (EDDL) framework to address the above challenges. Particularly, we adopt balanced incomplete block design (BIBD) methods to reduce computation loads on fog nodes by removing some data flows in DNNs in a systematic and structured manner. By leveraging grouped convolution techniques, we propose a practical scheme to conduct horizontal and vertical model partition jointly. Moreover, we integrate multi-task learning and ensemble learning techniques to further improve the inference accuracy. Simulation results verify the effectiveness of EDDL framework in achieving notable reduction in computation load and memory footprint with mild loss of inference accuracy. |
关键词 | Computational modeling Load modeling Neurons Convolution Bipartite graph Biological neural networks Training |
会议地点 | Waikoloa, HI, USA |
会议日期 | 9-13 Dec. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114798 |
专题 | 科道书院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Ziyu Shao |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yijia Chang,Xi Huang,Ziyu Shao,et al. An Efficient Distributed Deep Learning Framework for Fog-Based IoT Systems[C],2019:1-6. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yijia Chang]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yijia Chang]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yijia Chang]的文章 |
[Xi Huang]的文章 |
[Ziyu Shao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。