消息
×
loading..
D3M: A Deep Domain Decomposition Method for Partial Differential Equations
2020
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号8
发表状态已发表
DOI10.1109/ACCESS.2019.2957200
摘要A state-of-the-art deep domain decomposition method (D3M) based on the variational principle is proposed for partial differential equations (PDEs). The solution of PDEs can be formulated as the solution of a constrained optimization problem, and we design a hierarchical neural network framework to solve this optimization problem. Through decomposing a PDE system into components parts, our D3M builds local neural networks on physical subdomains independently (which can be implemented in parallel), so as to obtain efficient neural network approximations for complex problems. Our analysis shows that the D3M approximation solution converges to the exact solution of the underlying PDEs. The accuracy and the efficiency of D3M are validated and demonstrated with numerical experiments.
URL查看原文
收录类别SCI ; SCIE ; EI
来源库IEEE
引用统计
被引频次:80[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104514
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_廖奇峰组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3.University of Chinese Academy of Sciences, Beijing, China
4.Viterbi School of Engineering, University of Southern California, Los Angeles, USA
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ke Li,Kejun Tang,Tianfan Wu,et al. D3M: A Deep Domain Decomposition Method for Partial Differential Equations[J]. IEEE ACCESS,2020,8.
APA Ke Li,Kejun Tang,Tianfan Wu,&Qifeng Liao.(2020).D3M: A Deep Domain Decomposition Method for Partial Differential Equations.IEEE ACCESS,8.
MLA Ke Li,et al."D3M: A Deep Domain Decomposition Method for Partial Differential Equations".IEEE ACCESS 8(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ke Li]的文章
[Kejun Tang]的文章
[Tianfan Wu]的文章
百度学术
百度学术中相似的文章
[Ke Li]的文章
[Kejun Tang]的文章
[Tianfan Wu]的文章
必应学术
必应学术中相似的文章
[Ke Li]的文章
[Kejun Tang]的文章
[Tianfan Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。