消息
×
loading..
×
验证码:
换一张
忘记密码?
记住我
×
统一认证登录
登录
中文版
|
English
上海科技大学知识管理系统
ShanghaiTech University Knowledge Management System
统一认证登录
登录
注册
ALL
ORCID
题名
作者
发表日期
关键词
文献类型
DOI
出处
存缴日期
收录类别
出版者
学习讨论厅
图片搜索
粘贴图片网址
首页
研究单元&专题
作者
文献类型
学科分类
知识图谱
知识整合
学习讨论厅
在结果中检索
研究单元&专题
信息科学与技术学院 [15]
生物医学工程学院 [3]
生命科学与技术学院 [1]
科技发展处 [1]
更多...
作者
石远明 [4]
孙露 [4]
吴幼龙 [3]
沈定刚 [3]
胡浩炀 [3]
赵登吉 [1]
更多...
文献类型
会议论文 [10]
期刊论文 [5]
预印本 [1]
发表日期
2025 [2]
2024 [2]
2023 [8]
2022 [4]
出处
FRONTIERS ... [3]
IEEE TRANS... [2]
IEEE TRANS... [2]
LECTURE NO... [2]
2023 IEEE ... [1]
Arxiv [1]
更多...
语种
英语 [15]
资助项目
China Post... [1]
Key R&D Pr... [1]
NSF of Chi... [1]
National K... [1]
National K... [1]
National N... [1]
更多...
资助机构
收录类别
EI [14]
CPCI-S [5]
SCI [4]
CPCI [1]
SCOPUS [1]
状态
已发表 [13]
×
知识图谱
KMS
反馈留言
浏览/检索结果:
共16条,第1-10条
帮助
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
发表日期升序
发表日期降序
作者升序
作者降序
题名升序
题名降序
提交时间升序
提交时间降序
WOS被引频次升序
WOS被引频次降序
期刊影响因子升序
期刊影响因子降序
SurRecNet: A Multi-task Model with Integrating MRI and Diagnostic Descriptions for Rectal Cancer Survival Analysis
会议论文
LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS), Marrakesh, Morocco, October 6, 2024 - October 6, 2024
作者:
Meng, Runqi
;
Liu, Zonglin
;
Sun, Yiqun
;
Jia, Dengqiang
;
Teng, Lin
收藏
|
浏览/下载:321/0
|
提交时间:2024/11/08
Diagnosis
Lung cancer
Multi-task learning
Oncology
Cancer patients
MR-images
Multi-task model
Multitask learning
Performance
Rectal cancer
Rectal cancer analyze
Survival analysis
Treatment planning
Vision-language alignment
Clustered Federated Multi-Task Learning: A Communication-and-Computation Efficient Sparse Sharing Approach
期刊论文
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 卷号: PP, 期号: 99
作者:
Yuhan Ai
;
Qimei Chen
;
Guangxu Zhu
;
Dingzhu Wen
;
Hao Jiang
Adobe PDF(3720Kb)
|
收藏
|
浏览/下载:73/3
|
提交时间:2025/03/10
Adversarial machine learning
Benchmarking
Contrastive Learning
Federated learning
Multi-task learning
Transfer learning
Clusterings
Communication resources
Distributed data
Federated multi-task learning
Model pruning
Multitask learning
Performance
Personalized model
Sparse sharing
Sparsity ratios
Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty
期刊论文
MOLECULAR PHARMACEUTICS, 2024, 卷号: 21, 期号: 12
作者:
Zhang, Yuanyuan
;
Xie, Zhiyin
;
Xiao, Fu
;
Yu, Jie
;
Fan, Zhehuan
Adobe PDF(5565Kb)
|
收藏
|
浏览/下载:171/1
|
提交时间:2024/11/19
pharmacokinetic parameters
machine learning
uncertainty
stacking
multitask learning
ADME
MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation
会议论文
SIGIR 2024 - PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, Washington, DC, United states, July 14, 2024 - July 18, 2024
作者:
Xu, Jiahui
;
Sun, Lu
;
Zhao, Dengji
Adobe PDF(1222Kb)
|
收藏
|
浏览/下载:341/3
|
提交时间:2024/08/23
Coarse-grained modeling
Computational efficiency
Learning systems
Binary masks
Learning techniques
Mixture of experts
Model mixtures
Multi tasks
Multi-task recommendation
Multitask learning
Parameter sharing
Real-world datasets
Subnetworks
Structured Sparse Multi-Task Learning with Generalized Group Lasso
会议论文
FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, Krakow, Poland, September 30, 2023 - October 4, 2023
作者:
Fei, Luhuan
;
Sun, Lu
;
Kudo, Mineichi
;
Kimura, Keigo
Adobe PDF(934Kb)
|
收藏
|
浏览/下载:680/233
|
提交时间:2023/11/24
Learning systems
Machine learning
Mathematical operators
Optimization
Compact model
Generalisation
Group lassos
High-dimensional
Learning to learn
Multitask learning
Optimization algorithms
Regularisation
Sharing information
Structured sparsities
Multiplicative Sparse Tensor Factorization for Multi-View Multi-Task Learning
会议论文
FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, Krakow, Poland, September 30, 2023 - October 4, 2023
作者:
Wang, Xinyi
;
Sun, Lu
;
Nguyen, Canh Hao
;
Mamitsuka, Hiroshi
Adobe PDF(783Kb)
|
收藏
|
浏览/下载:575/201
|
提交时间:2023/11/24
Factorization
Learning systems
Machine learning
Heterogeneous data
Learn+
Learning methods
Multi-views
Multiple tasks
Multiple views
Multitask learning
Predictive information
Sparse tensors
Tensor factorization
Grouped Multi-Task Learning with Hidden Tasks Enhancement
会议论文
FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, Krakow, Poland, September 30, 2023 - October 4, 2023
作者:
Adobe PDF(599Kb)
|
收藏
|
浏览/下载:502/203
|
提交时间:2023/11/24
Clustering algorithms
Learning systems
Machine learning
Generalization performance
Learning methods
Multitask learning
Parameter learning
Parameter spaces
Prediction performance
Prediction tasks
Subspace clustering
Unified framework
Within clusters
Communication-Efficient Coded Computing for Distributed Multi-Task Learning
会议论文
IEEE TRANSACTIONS ON COMMUNICATIONS
作者:
Hu, Haoyang
;
Wu, Youlong
;
Shi, Yuanming
;
Li, Songze
;
Jiang, Chunxiao
Adobe PDF(8448Kb)
|
收藏
|
浏览/下载:440/1
|
提交时间:2023/08/11
Distributed computer systems
Job analysis
Learning systems
Linearization
Coding
Communication load
Computational modelling
Distributed database
Distributed learning
Downlink
Encodings
Multitask learning
Task analysis
Uplink
Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity
期刊论文
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 卷号: 42, 期号: 2, 页码: 557-567
作者:
Liu, Yanbei
;
Li, Henan
;
Luo, Tao
;
Zhang, Changqing
;
Xiao, Zhitao
Adobe PDF(3166Kb)
|
收藏
|
浏览/下载:462/0
|
提交时间:2023/03/10
Biological organs
Classification (of information)
Computerized tomography
Diagnosis
Forecasting
Graph neural networks
Iterative methods
Learning systems
Medical imaging
Attention mechanisms
Chest CT
Conversion time
Coronavirus disease 2019 severity
Graph neural networks
Multi-source informations
Multitask learning
Non-imaging
Structural attention mechanism
Work-flows
Coded Distributed Computing for Hierarchical Multi-task Learning
会议论文
2023 IEEE INFORMATION THEORY WORKSHOP, ITW 2023, Saint-Malo, France, April 23, 2023 - April 28, 2023
作者:
Hu, Haoyang
;
Li, Songze
Adobe PDF(1091Kb)
|
收藏
|
浏览/下载:516/121
|
提交时间:2023/08/11
Distributed computer systems
Learning systems
Linearization
Central servers
Coded computing
Communication load
Distributed learning
Downlink transmissions
Learn+
Learning models
Multitask learning
Single task learning
User need
首页
上一页
1
2
下一页
末页