MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation
2024-07-10
会议录名称SIGIR 2024 - PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL
页码2527-2531
发表状态已发表
DOI10.1145/3626772.3657922
摘要

Multi-task learning techniques have attracted great attention in recommendation systems because they can meet the needs of modeling multiple perspectives simultaneously and improve recommendation performance. As promising multi-task recommendation system models, Mixture-of-Experts (MoE) and related methods use an ensemble of expert sub-networks to improve generalization and have achieved significant success in practical applications. However, they still face key challenges in efficient parameter sharing and resource utilization, especially when they are applied to real-world datasets and resource-constrained devices. In this paper, we propose a novel framework called Mixture-of-Masked-Experts (MoME) to address the challenges. Unlike MoE, expert sub-networks in MoME are extracted from an identical over-parameterized base network by learning binary masks. It utilizes a binary mask learning mechanism composed of neuron-level model masking and weight-level expert masking to achieve coarse-grained base model pruning and fine-grained expert pruning, respectively. Compared to existing MoE-based models, MoME achieves efficient parameter sharing and requires significantly less sub-network storage since it actually only trains a base network and a mixture of partially overlapped binary expert masks. Experimental results on real-world datasets demonstrate the superior performance of MoME in terms of recommendation accuracy and computational efficiency. Our code is available at https://https://github.com/Xjh0327/MoME. © 2024 Owner/Author.

会议录编者/会议主办者ACM SIGIR
关键词Coarse-grained modeling Computational efficiency Learning systems Binary masks Learning techniques Mixture of experts Model mixtures Multi tasks Multi-task recommendation Multitask learning Parameter sharing Real-world datasets Subnetworks
会议名称47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点Washington, DC, United states
会议日期July 14, 2024 - July 18, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Science and Technology Commission of Shanghai Municipality[23010503000]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:001273410002085
出版者Association for Computing Machinery, Inc
EI入藏号20243216839843
EI主题词Recommender systems
EI分类号723.5 Computer Applications ; 931.3 Atomic and Molecular Physics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/411255
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_赵登吉组
信息科学与技术学院_PI研究组_孙露组
通讯作者Xu, Jiahui
作者单位
ShanghaiTech University, Shanghai, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xu, Jiahui,Sun, Lu,Zhao, Dengji. MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation[C]//ACM SIGIR. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2024:2527-2531.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Jiahui]的文章
[Sun, Lu]的文章
[Zhao, Dengji]的文章
百度学术
百度学术中相似的文章
[Xu, Jiahui]的文章
[Sun, Lu]的文章
[Zhao, Dengji]的文章
必应学术
必应学术中相似的文章
[Xu, Jiahui]的文章
[Sun, Lu]的文章
[Zhao, Dengji]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。