ShanghaiTech University Knowledge Management System
MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation | |
2024-07-10 | |
会议录名称 | SIGIR 2024 - PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL |
页码 | 2527-2531 |
发表状态 | 已发表 |
DOI | 10.1145/3626772.3657922 |
摘要 | Multi-task learning techniques have attracted great attention in recommendation systems because they can meet the needs of modeling multiple perspectives simultaneously and improve recommendation performance. As promising multi-task recommendation system models, Mixture-of-Experts (MoE) and related methods use an ensemble of expert sub-networks to improve generalization and have achieved significant success in practical applications. However, they still face key challenges in efficient parameter sharing and resource utilization, especially when they are applied to real-world datasets and resource-constrained devices. In this paper, we propose a novel framework called Mixture-of-Masked-Experts (MoME) to address the challenges. Unlike MoE, expert sub-networks in MoME are extracted from an identical over-parameterized base network by learning binary masks. It utilizes a binary mask learning mechanism composed of neuron-level model masking and weight-level expert masking to achieve coarse-grained base model pruning and fine-grained expert pruning, respectively. Compared to existing MoE-based models, MoME achieves efficient parameter sharing and requires significantly less sub-network storage since it actually only trains a base network and a mixture of partially overlapped binary expert masks. Experimental results on real-world datasets demonstrate the superior performance of MoME in terms of recommendation accuracy and computational efficiency. Our code is available at https://https://github.com/Xjh0327/MoME. © 2024 Owner/Author. |
会议录编者/会议主办者 | ACM SIGIR |
关键词 | Coarse-grained modeling Computational efficiency Learning systems Binary masks Learning techniques Mixture of experts Model mixtures Multi tasks Multi-task recommendation Multitask learning Parameter sharing Real-world datasets Subnetworks |
会议名称 | 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 |
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES |
会议地点 | Washington, DC, United states |
会议日期 | July 14, 2024 - July 18, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Science and Technology Commission of Shanghai Municipality[23010503000] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001273410002085 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20243216839843 |
EI主题词 | Recommender systems |
EI分类号 | 723.5 Computer Applications ; 931.3 Atomic and Molecular Physics |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/411255 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_赵登吉组 信息科学与技术学院_PI研究组_孙露组 |
通讯作者 | Xu, Jiahui |
作者单位 | ShanghaiTech University, Shanghai, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Jiahui,Sun, Lu,Zhao, Dengji. MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation[C]//ACM SIGIR. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2024:2527-2531. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Jiahui]的文章 |
[Sun, Lu]的文章 |
[Zhao, Dengji]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Jiahui]的文章 |
[Sun, Lu]的文章 |
[Zhao, Dengji]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Jiahui]的文章 |
[Sun, Lu]的文章 |
[Zhao, Dengji]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。