ShanghaiTech University Knowledge Management System
Verifying and Quantifying Side-channel Resistance of Masked Software Implementations | |
2019-08 | |
发表期刊 | ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY |
ISSN | 1049-331X |
EISSN | 1557-7392 |
卷号 | 28期号:3 |
发表状态 | 已发表 |
DOI | 10.1145/3330392 |
摘要 | Power side-channel attacks, capable of deducing secret data using statistical analysis, have become a serious threat. Random masking is a widely used countermeasure for removing the statistical dependence between secret data and side-channel information. Although there are techniques for verifying whether a piece of software code is perfectly masked, they are limited in accuracy and scalability. To bridge this gap, we propose a refinement-based method for verifying masking countermeasures. Our method is more accurate than prior type-inference-based approaches and more scalable than prior model-counting-based approaches using SAT or SMT solvers. Indeed, our method can be viewed as a gradual refinement of a set of type-inference rules for reasoning about distribution types. These rules are kept abstract initially to allow fast deduction and then made concrete when the abstract version is not able to resolve the verification problem. We also propose algorithms for quantifying the amount of side-channel information leakage from a software implementation using the notion of quantitative masking strength. We have implemented our method in a software tool and evaluated it on cryptographic benchmarks including AES and MAC-Keccak. The experimental results show that our method significantly outperforms state-of-the-art techniques in terms of accuracy and scalability. |
关键词 | Differential power analysis perfect masking type inference quantitative masking strength satisfiability modulo theory (SMT) cryptographic software AES MAC-Keccak |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | U.S. National Science Foundation (NSF)[CNS-1617203] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:000496205700005 |
出版者 | ASSOC COMPUTING MACHINERY |
EI入藏号 | 20194807768527 |
EI主题词 | Computer software ; Scalability |
EI分类号 | Computer Software, Data Handling and Applications:723 ; Systems Science:961 |
WOS关键词 | HIGHER-ORDER MASKING ; SECURE ; AES |
原始文献类型 | Article |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80579 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_宋富组 |
通讯作者 | Song, Fu |
作者单位 | 1.ShanghaiTech Univ, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 2.Univ Southern Calif, 941 Bloom Walk Rd, Los Angeles, CA 90089 USA 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Gao, Pengfei,Zhang, Jun,Song, Fu,et al. Verifying and Quantifying Side-channel Resistance of Masked Software Implementations[J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,2019,28(3). |
APA | Gao, Pengfei,Zhang, Jun,Song, Fu,&Wang, Chao.(2019).Verifying and Quantifying Side-channel Resistance of Masked Software Implementations.ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,28(3). |
MLA | Gao, Pengfei,et al."Verifying and Quantifying Side-channel Resistance of Masked Software Implementations".ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 28.3(2019). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。