Verifying and Quantifying Side-channel Resistance of Masked Software Implementations
2019-08
发表期刊ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY
ISSN1049-331X
EISSN1557-7392
卷号28期号:3
发表状态已发表
DOI10.1145/3330392
摘要Power side-channel attacks, capable of deducing secret data using statistical analysis, have become a serious threat. Random masking is a widely used countermeasure for removing the statistical dependence between secret data and side-channel information. Although there are techniques for verifying whether a piece of software code is perfectly masked, they are limited in accuracy and scalability. To bridge this gap, we propose a refinement-based method for verifying masking countermeasures. Our method is more accurate than prior type-inference-based approaches and more scalable than prior model-counting-based approaches using SAT or SMT solvers. Indeed, our method can be viewed as a gradual refinement of a set of type-inference rules for reasoning about distribution types. These rules are kept abstract initially to allow fast deduction and then made concrete when the abstract version is not able to resolve the verification problem. We also propose algorithms for quantifying the amount of side-channel information leakage from a software implementation using the notion of quantitative masking strength. We have implemented our method in a software tool and evaluated it on cryptographic benchmarks including AES and MAC-Keccak. The experimental results show that our method significantly outperforms state-of-the-art techniques in terms of accuracy and scalability.
关键词Differential power analysis perfect masking type inference quantitative masking strength satisfiability modulo theory (SMT) cryptographic software AES MAC-Keccak
收录类别SCI ; SCIE ; EI
语种英语
资助项目U.S. National Science Foundation (NSF)[CNS-1617203]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000496205700005
出版者ASSOC COMPUTING MACHINERY
EI入藏号20194807768527
EI主题词Computer software ; Scalability
EI分类号Computer Software, Data Handling and Applications:723 ; Systems Science:961
WOS关键词HIGHER-ORDER MASKING ; SECURE ; AES
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80579
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_宋富组
通讯作者Song, Fu
作者单位
1.ShanghaiTech Univ, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
2.Univ Southern Calif, 941 Bloom Walk Rd, Los Angeles, CA 90089 USA
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Gao, Pengfei,Zhang, Jun,Song, Fu,et al. Verifying and Quantifying Side-channel Resistance of Masked Software Implementations[J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,2019,28(3).
APA Gao, Pengfei,Zhang, Jun,Song, Fu,&Wang, Chao.(2019).Verifying and Quantifying Side-channel Resistance of Masked Software Implementations.ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,28(3).
MLA Gao, Pengfei,et al."Verifying and Quantifying Side-channel Resistance of Masked Software Implementations".ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 28.3(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Pengfei]的文章
[Zhang, Jun]的文章
[Song, Fu]的文章
百度学术
百度学术中相似的文章
[Gao, Pengfei]的文章
[Zhang, Jun]的文章
[Song, Fu]的文章
必应学术
必应学术中相似的文章
[Gao, Pengfei]的文章
[Zhang, Jun]的文章
[Song, Fu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。