ShanghaiTech University Knowledge Management System
Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes | |
2019-11-25 | |
发表期刊 | JOURNAL OF CHEMICAL INFORMATION AND MODELING
![]() |
ISSN | 1549-9596 |
EISSN | 1549-960X |
卷号 | 59期号:11页码:4636-4644 |
发表状态 | 已发表 |
DOI | 10.1021/acs.jcim.9b00623 |
摘要 | In this work, we propose a computational framework for machine learning prediction on structural and performance properties of nanoporous materials for methane storage application. For our machine learning prediction, two descriptors based on pore geometry barcodes were developed; one descriptor is a set of distances from a structure to the most diverse set in barcode space, and the second descriptor extracts and uses the most important features from the barcodes. First, to identify the optimal condition for machine learning prediction, the effects of training set preparation method, training set size, and machine learning models were investigated. Our analysis showed that kernel ridge regression provides the highest prediction accuracy, and randomly selected 5% structures of the entire set would work well as a training set. Our results showed that both descriptors accurately predicted performance and even structural properties of zeolites. Furthermore, we demonstrated that our approach predicts accurately properties of metal-organic frameworks, which might indicate the possibility of this approach to be easily applied to predict the properties of other types of nanoporous materials. |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Computer Science |
WOS类目 | Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications |
WOS记录号 | WOS:000500038700014 |
出版者 | AMER CHEMICAL SOC |
WOS关键词 | METAL-ORGANIC FRAMEWORKS ; CAPTURE ; STORAGE ; TOOL ; VAN |
原始文献类型 | Article |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80566 |
专题 | 物质科学与技术学院_博士生 物质科学与技术学院_PI研究组_yongjin lee组 物质科学与技术学院_硕士生 |
通讯作者 | Lee, Yongjin |
作者单位 | ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Xiangyu,Cui, Jing,Zhang, Kexin,et al. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2019,59(11):4636-4644. |
APA | Zhang, Xiangyu,Cui, Jing,Zhang, Kexin,Wu, Jiasheng,&Lee, Yongjin.(2019).Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.JOURNAL OF CHEMICAL INFORMATION AND MODELING,59(11),4636-4644. |
MLA | Zhang, Xiangyu,et al."Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes".JOURNAL OF CHEMICAL INFORMATION AND MODELING 59.11(2019):4636-4644. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。