消息
×
loading..
Neural Task Scheduling with Reinforcement Learning for Fog Computing Systems
2019-12
会议录名称2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
ISSN1930-529X
页码1-6
发表状态已发表
DOI10.1109/GLOBECOM38437.2019.9014045
摘要

A key challenge in the design space of fog computing systems is online task scheduling, i.e., to allocate multiple types of resources to pending tasks that are constantly generated from end devices. It is challenging because of the online, intensive, and time-varying nature of task arrival, the varieties in the amounts and durations of task resource demands, as well as the unattainability of such priori information due to the online nature of task arrivals. To handle such uncertainties, an online task scheduler design with flexibility to process sequences of task arrivals with variable lengths is highly demanded. Existing works have adopted deep reinforcement learning (DRL) techniques to develop online task schedulers in a data-driven fashion by constructing them as neural networks and training using empirical data. However, hindered by the intrinsic restriction of the underlying neural network design, such schedulers often suffer from poor flexibility that may induce resource under- utilization, or overly fine-grained control that induces considerable overheads. In this paper, we address the above challenges by integrating pointer network architecture with the scheduler design, and proposing Neural Task Scheduling (NTS), an online flexible task scheduling scheme which effectively reduces average task slowdown to facilitate best quality-of-service. Simulation results show that NTS consistently outperforms state-of-the-art schemes under different settings.

关键词Task analysis Processor scheduling Edge computing Neural networks Resource management Machine learning Decision making
会议地点Waikoloa, HI, USA
会议日期9-13 Dec. 2019
URL查看原文
收录类别EI ; CPCI-S ; CPCI
语种英语
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80548
专题科道书院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_PI研究组_杨旸组
创意与艺术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Bian, Simeng; Shao, Ziyu
作者单位
School of Information Science and Technology, ShanghaiTech University
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Bian, Simeng,Huang, Xi,Shao, Ziyu,et al. Neural Task Scheduling with Reinforcement Learning for Fog Computing Systems[C],2019:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bian, Simeng]的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
百度学术
百度学术中相似的文章
[Bian, Simeng]的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
必应学术
必应学术中相似的文章
[Bian, Simeng]的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。