消息
×
loading..
An Efficient Method for Non-Convex Blind Deconvolution
2019
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号7页码:113663-113674
发表状态已发表
DOI10.1109/ACCESS.2019.2933577
摘要

This paper considers blind deconvolution problem that to recover unknown signals f and g from their convolution signal. Non-convex optimization approach is an efficient method to get the solution, but it is a challenge to find the exact solution for a non-convex optimization problem. Existing work provides a full gradient descent (GD) method converging to the global minimum from a proper initialization. However, GD algorithm is not computationally efficient. In this paper, we design the first stochastic gradient descent (SGD) algorithm that converges linearly to the exact solution. We also design a Kaczmarz algorithm which adapts the step size of SGD algorithm. It also has the linear convergence and is more computationally efficient. Finally, we analyze the global geometry of the objective function. Although the function is non-convex, its expectation has a good geometry that every local minimum is also a global optimal point. Our numerical experiments demonstrate that both SGD and Kaczmarz algorithms are more computationally efficient and can converge to the global minimum even without a proper initialization.

关键词Blind deconvolution non-convex stochastic gradient descent Kaczmarz linear convergence geometric property
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目University of Chinese Academy of Sciences through UCAS Joint Ph.D. Training Program[UCAS[2015]37]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000483022100023
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词IDENTIFIABILITY ; KACZMARZ
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/67944
专题信息科学与技术学院_博士生
通讯作者Liu, Yixian
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Yixian. An Efficient Method for Non-Convex Blind Deconvolution[J]. IEEE ACCESS,2019,7:113663-113674.
APA Liu, Yixian.(2019).An Efficient Method for Non-Convex Blind Deconvolution.IEEE ACCESS,7,113663-113674.
MLA Liu, Yixian."An Efficient Method for Non-Convex Blind Deconvolution".IEEE ACCESS 7(2019):113663-113674.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Yixian]的文章
百度学术
百度学术中相似的文章
[Liu, Yixian]的文章
必应学术
必应学术中相似的文章
[Liu, Yixian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。