| |||||||
ShanghaiTech University Knowledge Management System
An Efficient Method for Non-Convex Blind Deconvolution | |
2019 | |
发表期刊 | IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 2169-3536 |
卷号 | 7页码:113663-113674 |
发表状态 | 已发表 |
DOI | 10.1109/ACCESS.2019.2933577 |
摘要 | This paper considers blind deconvolution problem that to recover unknown signals f and g from their convolution signal. Non-convex optimization approach is an efficient method to get the solution, but it is a challenge to find the exact solution for a non-convex optimization problem. Existing work provides a full gradient descent (GD) method converging to the global minimum from a proper initialization. However, GD algorithm is not computationally efficient. In this paper, we design the first stochastic gradient descent (SGD) algorithm that converges linearly to the exact solution. We also design a Kaczmarz algorithm which adapts the step size of SGD algorithm. It also has the linear convergence and is more computationally efficient. Finally, we analyze the global geometry of the objective function. Although the function is non-convex, its expectation has a good geometry that every local minimum is also a global optimal point. Our numerical experiments demonstrate that both SGD and Kaczmarz algorithms are more computationally efficient and can converge to the global minimum even without a proper initialization. |
关键词 | Blind deconvolution non-convex stochastic gradient descent Kaczmarz linear convergence geometric property |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | University of Chinese Academy of Sciences through UCAS Joint Ph.D. Training Program[UCAS[2015]37] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000483022100023 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | IDENTIFIABILITY ; KACZMARZ |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/67944 |
专题 | 信息科学与技术学院_博士生 |
通讯作者 | Liu, Yixian |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Yixian. An Efficient Method for Non-Convex Blind Deconvolution[J]. IEEE ACCESS,2019,7:113663-113674. |
APA | Liu, Yixian.(2019).An Efficient Method for Non-Convex Blind Deconvolution.IEEE ACCESS,7,113663-113674. |
MLA | Liu, Yixian."An Efficient Method for Non-Convex Blind Deconvolution".IEEE ACCESS 7(2019):113663-113674. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Yixian]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Yixian]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Yixian]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。