ShanghaiTech University Knowledge Management System
A DFT study on the active surfaces of the ZnGa2O4 spinel catalyst for CO2 hydrogenation to methanol | |
2025-07 | |
发表期刊 | MOLECULAR CATALYSIS (IF:3.9[JCR-2023],3.8[5-Year]) |
ISSN | 2468-8231 |
卷号 | 582 |
发表状态 | 已发表 |
DOI | 10.1016/j.mcat.2025.115166 |
摘要 | In this work, we constructed the low Miller index surfaces of (100), (001), (111), and (110) of the ZnGa2O4 spinel catalyst. Through extensive DFT calculations, we found that the oxygen vacancy (VO) formation energies on the (100) and (001) surfaces were <1.0 eV, whereas those on the (111) and (110) surfaces were >3.0 eV. We further examined the dissociation of molecular hydrogen (H2) on these surfaces, and found that H2 homolytic dissociation tended to occur on surfaces with lower VO formation energies, while H2 heterolytic dissociation were favored on those with higher VO formation energies. CO2 adsorption and activation on the different surfaces of the ZnGa2O4 spinel catalyst were investigated, and on surfaces with lower VO formation energies, CO2 adsorbs in a linear configuration (ln-CO2*), while on surfaces with higher VO formation energies, CO2 adopts in a bent adsorption geometry (bt-CO2*) and is easier to dissociate. For HCOO formation from ln-CO2* + H*, the (110) surface has the lowest energy barrier, so it is likely the most active surface for CO2 hydrogenation to methanol (CH3OH). Thus, we compared the CH3OH formation pathway on the ZnGa2O4(110) surface with the pathways for direct and indirect CO2 dissociation, and predicted it to favor CH3OH production. Our calculations reveal the active surfaces of the ZnGa2O4 spinel catalyst for CO2 hydrogenation to CH3OH, and provide insights into the experimentally observed high CH3OH selectivity, which should be important for the rational design of Zn-based spinel catalysts for this reaction. |
关键词 | ZnGa2O4 spinel catalyst Methanol synthesis CO2 hydrogenation DFT calculations Active surfaces |
学科门类 | 理学 ; 工学 |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
出版者 | Elsevier B.V. |
EI入藏号 | 20251818348287 |
EI主题词 | Hydrogenolysis |
EI分类号 | 802.2 Chemical Reactions |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/527182 |
专题 | 物质科学与技术学院 物质科学与技术学院_特聘教授组_李圣刚组 物质科学与技术学院_硕士生 |
通讯作者 | Shenggang Li |
作者单位 | 1.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China 2.Low Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, PR China 3.University of Chinese Academy of Sciences, Beijing 100049, PR China 4.State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Ziqi Tang,YuanJie Bao,Zhangqian Wei,et al. A DFT study on the active surfaces of the ZnGa2O4 spinel catalyst for CO2 hydrogenation to methanol[J]. MOLECULAR CATALYSIS,2025,582. |
APA | Ziqi Tang,YuanJie Bao,Zhangqian Wei,&Shenggang Li.(2025).A DFT study on the active surfaces of the ZnGa2O4 spinel catalyst for CO2 hydrogenation to methanol.MOLECULAR CATALYSIS,582. |
MLA | Ziqi Tang,et al."A DFT study on the active surfaces of the ZnGa2O4 spinel catalyst for CO2 hydrogenation to methanol".MOLECULAR CATALYSIS 582(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。