ShanghaiTech University Knowledge Management System
Auto-detection of hypsarrhythmia EEG in West Syndrome by dedicated feature fusion and machine learning | |
2025 | |
发表期刊 | IEEE SENSORS JORNAL (IF:4.3[JCR-2023],4.2[5-Year]) |
ISSN | 1530-437X |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/JSEN.2025.3568867 |
摘要 | West syndrome (WS) is a neurodevelopmental disorder causing retardation in many patients. Hypsarrhythmia electroencephalography (EEG) and motor spasms are considered as clinical manifestation of WS. Visual inspection of hypsarrhythmia in long-term EEG recordings is timeconsuming and unreliable. This study investigates automated hypsarrhythmia diagnosis using machine learning and dedicated feature selection. 101 WS patients and 155 healthy controls HC were invovled. 15-s representative hypsarrhythmia and non-hypsarrhythmia EEG segments were selected from each WS patient, and a normal EEG segment with the same length was picked from each HC. Amplitude, spectrum, entropy, and correlation related features were extracted from each EEG segment. Four popular classifiers, i.e., logistic regression (LR), support vector machine (SVM), adaptive boosting (AdaBoost), and K-nearest neighbors (KNN), were employed to perform three-label classification among hypsarrhythmia, non-hypsarrhythmia, and HC. Dedicated feature selection was implemented to identify an optimal feature subset for effective classification. Accuracy (ACC), sensitivity (SN), specificity (SP), and the area under the receiver operating characteristic curve (AUC) were adopted as performance metrics. AdaBoost produced the best results in most metrics, i.e., 0.975, 0.971, 0.988, and 0997 for ACC, SN, SP, and AUC, respectively. RMS computed in the delta band and entropy features computed in the beta band were identified as the two most relevant features. Our findings provide useful information for clinical hypsarrhythmia diagnosis, and may boost the application of machine learning for automated WS diagnosis in clinical practice. |
URL | 查看原文 |
收录类别 | SCIE |
语种 | 英语 |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/523927 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_徐林组 生物医学工程学院_PI研究组_李远宁 |
共同第一作者 | Qinman Wu; Wenyuan He |
通讯作者 | Qinman Wu; Yuanning Li; Dake He; Xu L(徐林) |
作者单位 | 1.Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China. 2.School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China. 3.School of Biomedical Science, University of Melbourne, Victoria, 3010 Australia. 4.Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands. 5.Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078 China. 6.Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China. 7.School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China. 8.ShanghaiEngineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China. |
通讯作者单位 | 信息科学与技术学院; 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Yumei Yan,Qinman Wu,Wenyuan He,et al. Auto-detection of hypsarrhythmia EEG in West Syndrome by dedicated feature fusion and machine learning[J]. IEEE SENSORS JORNAL,2025,PP(99). |
APA | Yumei Yan.,Qinman Wu.,Wenyuan He.,Qiongru Guo.,Ruolin Hou.,...&Xu L.(2025).Auto-detection of hypsarrhythmia EEG in West Syndrome by dedicated feature fusion and machine learning.IEEE SENSORS JORNAL,PP(99). |
MLA | Yumei Yan,et al."Auto-detection of hypsarrhythmia EEG in West Syndrome by dedicated feature fusion and machine learning".IEEE SENSORS JORNAL PP.99(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yumei Yan]的文章 |
[Qinman Wu]的文章 |
[Wenyuan He]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yumei Yan]的文章 |
[Qinman Wu]的文章 |
[Wenyuan He]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yumei Yan]的文章 |
[Qinman Wu]的文章 |
[Wenyuan He]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。