Prefer2SD: A Human-in-the-Loop Approach to Balancing Similarity and Diversity in In-Game Friend Recommendations
2025-03-24
会议录名称INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, PROCEEDINGS IUI
页码1141-1161
发表状态已发表
DOI10.1145/3708359.3712075
摘要

In-game friend recommendations significantly impact player retention and sustained engagement in online games. Balancing similarity and diversity in recommendations is crucial for fostering stronger social bonds across diverse player groups. However, automated recommendation systems struggle to achieve this balance, especially as player preferences evolve over time. To tackle this challenge, we introduce Prefer2SD (derived from Preference to Similarity and Diversity), an iterative, human-in-the-loop approach designed to optimize the similarity-diversity (SD) ratio in friend recommendations. Developed in collaboration with a local game company, Prefer2D leverages a visual analytics system to help experts explore, analyze, and adjust friend recommendations dynamically, incorporating players' shifting preferences. The system employs interactive visualizations that enable experts to fine-tune the balance between similarity and diversity for distinct player groups. We demonstrate the efficacy of Prefer2SD through a within-subjects study (N=12), a case study, and expert interviews, showcasing its ability to enhance in-game friend recommendations and offering insights for the broader field of personalized recommendation systems. © 2025 Copyright held by the owner/author(s).

会议录编者/会议主办者ACM SIGAI ; ACM SIGCHI ; Artificial Intelligence Journal ; Mohamed bin Zayed University of Artificial Intelligence ; National Science Foundation (NSF)
关键词Active learning Contrastive Learning Active Learning Active learning. Case-studies Friend recommendations Human-in-the-loop Interactive visualizations On-line games Similarity and diversity Visual analytics Visual analytics systems
会议名称30th International Conference on Intelligent User Interfaces, IUI 2025
会议地点Cagliari, Italy
会议日期March 24, 2025 - March 27, 2025
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20251518197332
EI主题词Visual analytics
EI分类号902.1 Engineering Graphics ; 1101.2 Machine Learning ; 1106.3.1 Image Processing
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/517417
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_李权组
通讯作者Li, Quan
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Tongji University, Shanghai, China;
3.Chalmers University of Technology, Gothenburg, Sweden;
4.Ux Center, Netease Games, Guangzhou, China;
5.Netease Games Ux Center, Zhejiang, Hangzhou, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Xiyuan,Li, Ziang,Chen, Sizhe,et al. Prefer2SD: A Human-in-the-Loop Approach to Balancing Similarity and Diversity in In-Game Friend Recommendations[C]//ACM SIGAI, ACM SIGCHI, Artificial Intelligence Journal, Mohamed bin Zayed University of Artificial Intelligence, National Science Foundation (NSF):Association for Computing Machinery,2025:1141-1161.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xiyuan]的文章
[Li, Ziang]的文章
[Chen, Sizhe]的文章
百度学术
百度学术中相似的文章
[Wang, Xiyuan]的文章
[Li, Ziang]的文章
[Chen, Sizhe]的文章
必应学术
必应学术中相似的文章
[Wang, Xiyuan]的文章
[Li, Ziang]的文章
[Chen, Sizhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。