ShanghaiTech University Knowledge Management System
Prefer2SD: A Human-in-the-Loop Approach to Balancing Similarity and Diversity in In-Game Friend Recommendations | |
2025-03-24 | |
会议录名称 | INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, PROCEEDINGS IUI |
页码 | 1141-1161 |
发表状态 | 已发表 |
DOI | 10.1145/3708359.3712075 |
摘要 | In-game friend recommendations significantly impact player retention and sustained engagement in online games. Balancing similarity and diversity in recommendations is crucial for fostering stronger social bonds across diverse player groups. However, automated recommendation systems struggle to achieve this balance, especially as player preferences evolve over time. To tackle this challenge, we introduce Prefer2SD (derived from Preference to Similarity and Diversity), an iterative, human-in-the-loop approach designed to optimize the similarity-diversity (SD) ratio in friend recommendations. Developed in collaboration with a local game company, Prefer2D leverages a visual analytics system to help experts explore, analyze, and adjust friend recommendations dynamically, incorporating players' shifting preferences. The system employs interactive visualizations that enable experts to fine-tune the balance between similarity and diversity for distinct player groups. We demonstrate the efficacy of Prefer2SD through a within-subjects study (N=12), a case study, and expert interviews, showcasing its ability to enhance in-game friend recommendations and offering insights for the broader field of personalized recommendation systems. © 2025 Copyright held by the owner/author(s). |
会议录编者/会议主办者 | ACM SIGAI ; ACM SIGCHI ; Artificial Intelligence Journal ; Mohamed bin Zayed University of Artificial Intelligence ; National Science Foundation (NSF) |
关键词 | Active learning Contrastive Learning Active Learning Active learning. Case-studies Friend recommendations Human-in-the-loop Interactive visualizations On-line games Similarity and diversity Visual analytics Visual analytics systems |
会议名称 | 30th International Conference on Intelligent User Interfaces, IUI 2025 |
会议地点 | Cagliari, Italy |
会议日期 | March 24, 2025 - March 27, 2025 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20251518197332 |
EI主题词 | Visual analytics |
EI分类号 | 902.1 Engineering Graphics ; 1101.2 Machine Learning ; 1106.3.1 Image Processing |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/517417 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_李权组 |
通讯作者 | Li, Quan |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.Tongji University, Shanghai, China; 3.Chalmers University of Technology, Gothenburg, Sweden; 4.Ux Center, Netease Games, Guangzhou, China; 5.Netease Games Ux Center, Zhejiang, Hangzhou, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Xiyuan,Li, Ziang,Chen, Sizhe,et al. Prefer2SD: A Human-in-the-Loop Approach to Balancing Similarity and Diversity in In-Game Friend Recommendations[C]//ACM SIGAI, ACM SIGCHI, Artificial Intelligence Journal, Mohamed bin Zayed University of Artificial Intelligence, National Science Foundation (NSF):Association for Computing Machinery,2025:1141-1161. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。