Manifold-valued models for analysis of EEG time series data
2025-09
发表期刊COMPUTATIONAL STATISTICS AND DATA ANALYSIS (IF:1.5[JCR-2023],1.7[5-Year])
ISSN0167-9473
EISSN1872-7352
卷号209
发表状态已发表
DOI10.1016/j.csda.2025.108168
摘要

EEG (electroencephalogram) records brain electrical activity and is a vital clinical tool in the diagnosis and treatment of epilepsy. Time series of covariance matrices between EEG channels for patients suffering from epilepsy, obtained from an open-source dataset, are analysed. The aim is two-fold: to develop a model with interpretable parameters for different possible modes of EEG dynamics, and to explore the extent to which modelling results are affected by the choice of geometry imposed on the space of covariance matrices. The space of full-rank covariance matrices of fixed dimension forms a smooth manifold, and any statistical analysis inherently depends on the choice of metric or Riemannian structure on this manifold. The model specifies a distribution for the tangent direction vector at any time point, combining an autoregressive term, a mean reverting term and a form of Gaussian noise. Parameter inference is performed by maximum likelihood estimation, and we compare modelling results obtained using the standard Euclidean geometry and the affine invariant geometry on covariance matrices. The findings reveal distinct dynamics between epileptic seizures and interictal periods (between seizures), with interictal series characterized by strong mean reversion and absence of autoregression, while seizures exhibit significant autoregressive components with weaker mean reversion. The fitted models are also used to measure seizure dissimilarity within and between patients. © 2025 The Authors

关键词Electrocardiography Gaussian noise (electronic) Matrix algebra Maximum likelihood estimation Time series Time series analysis Vector spaces Auto-regressive Brain electrical activity Clinical tools Covariance matrices Mean-reversion Modeling results Neuroscience Riemannian manifold Time-series data Times series
URL查看原文
收录类别SCI ; EI
语种英语
资助项目UKRI Future Leaders Fellowships[MR/V026569/1]
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号WOS:001455558500001
出版者Elsevier B.V.
EI入藏号20251218080762
EI主题词Geometry
EI分类号102.1 Medicine - 709 Electrical Engineering, Other Topics - 716.1 Information Theory and Signal Processing - 1106.3 Digital Signal Processing - 1201 Mathematics - 1201.1 Algebra and Number Theory - 1201.14 Geometry and Topology - 1202.2 Mathematical Statistics
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/510721
专题数学科学研究所
数学科学研究所_PI研究组(P)_丁涛组
通讯作者Nye, Tom M.W.
作者单位
1.Institute of Mathematical Sciences, ShanghaiTech University, Shanghai; 201210, China;
2.School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne; NE1 7RU, United Kingdom;
3.School of Computing, Newcastle University, Newcastle upon Tyne; NE1 7RU, United Kingdom
第一作者单位数学科学研究所
第一作者的第一单位数学科学研究所
推荐引用方式
GB/T 7714
Ding, Tao,Nye, Tom M.W.,Wang, Yujiang. Manifold-valued models for analysis of EEG time series data[J]. COMPUTATIONAL STATISTICS AND DATA ANALYSIS,2025,209.
APA Ding, Tao,Nye, Tom M.W.,&Wang, Yujiang.(2025).Manifold-valued models for analysis of EEG time series data.COMPUTATIONAL STATISTICS AND DATA ANALYSIS,209.
MLA Ding, Tao,et al."Manifold-valued models for analysis of EEG time series data".COMPUTATIONAL STATISTICS AND DATA ANALYSIS 209(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ding, Tao]的文章
[Nye, Tom M.W.]的文章
[Wang, Yujiang]的文章
百度学术
百度学术中相似的文章
[Ding, Tao]的文章
[Nye, Tom M.W.]的文章
[Wang, Yujiang]的文章
必应学术
必应学术中相似的文章
[Ding, Tao]的文章
[Nye, Tom M.W.]的文章
[Wang, Yujiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。