ShanghaiTech University Knowledge Management System
Manifold-valued models for analysis of EEG time series data | |
2025-09 | |
发表期刊 | COMPUTATIONAL STATISTICS AND DATA ANALYSIS (IF:1.5[JCR-2023],1.7[5-Year]) |
ISSN | 0167-9473 |
EISSN | 1872-7352 |
卷号 | 209 |
发表状态 | 已发表 |
DOI | 10.1016/j.csda.2025.108168 |
摘要 | EEG (electroencephalogram) records brain electrical activity and is a vital clinical tool in the diagnosis and treatment of epilepsy. Time series of covariance matrices between EEG channels for patients suffering from epilepsy, obtained from an open-source dataset, are analysed. The aim is two-fold: to develop a model with interpretable parameters for different possible modes of EEG dynamics, and to explore the extent to which modelling results are affected by the choice of geometry imposed on the space of covariance matrices. The space of full-rank covariance matrices of fixed dimension forms a smooth manifold, and any statistical analysis inherently depends on the choice of metric or Riemannian structure on this manifold. The model specifies a distribution for the tangent direction vector at any time point, combining an autoregressive term, a mean reverting term and a form of Gaussian noise. Parameter inference is performed by maximum likelihood estimation, and we compare modelling results obtained using the standard Euclidean geometry and the affine invariant geometry on covariance matrices. The findings reveal distinct dynamics between epileptic seizures and interictal periods (between seizures), with interictal series characterized by strong mean reversion and absence of autoregression, while seizures exhibit significant autoregressive components with weaker mean reversion. The fitted models are also used to measure seizure dissimilarity within and between patients. © 2025 The Authors |
关键词 | Electrocardiography Gaussian noise (electronic) Matrix algebra Maximum likelihood estimation Time series Time series analysis Vector spaces Auto-regressive Brain electrical activity Clinical tools Covariance matrices Mean-reversion Modeling results Neuroscience Riemannian manifold Time-series data Times series |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | UKRI Future Leaders Fellowships[MR/V026569/1] |
WOS研究方向 | Computer Science ; Mathematics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Statistics & Probability |
WOS记录号 | WOS:001455558500001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20251218080762 |
EI主题词 | Geometry |
EI分类号 | 102.1 Medicine - 709 Electrical Engineering, Other Topics - 716.1 Information Theory and Signal Processing - 1106.3 Digital Signal Processing - 1201 Mathematics - 1201.1 Algebra and Number Theory - 1201.14 Geometry and Topology - 1202.2 Mathematical Statistics |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/510721 |
专题 | 数学科学研究所 数学科学研究所_PI研究组(P)_丁涛组 |
通讯作者 | Nye, Tom M.W. |
作者单位 | 1.Institute of Mathematical Sciences, ShanghaiTech University, Shanghai; 201210, China; 2.School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne; NE1 7RU, United Kingdom; 3.School of Computing, Newcastle University, Newcastle upon Tyne; NE1 7RU, United Kingdom |
第一作者单位 | 数学科学研究所 |
第一作者的第一单位 | 数学科学研究所 |
推荐引用方式 GB/T 7714 | Ding, Tao,Nye, Tom M.W.,Wang, Yujiang. Manifold-valued models for analysis of EEG time series data[J]. COMPUTATIONAL STATISTICS AND DATA ANALYSIS,2025,209. |
APA | Ding, Tao,Nye, Tom M.W.,&Wang, Yujiang.(2025).Manifold-valued models for analysis of EEG time series data.COMPUTATIONAL STATISTICS AND DATA ANALYSIS,209. |
MLA | Ding, Tao,et al."Manifold-valued models for analysis of EEG time series data".COMPUTATIONAL STATISTICS AND DATA ANALYSIS 209(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。