Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection
2025-06-10
会议录名称2025 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
发表状态正式接收
摘要

Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned phys ical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously repli cate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using arealrobotarmandmotor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset in cludes morethan6400videosacross22real-worldobjectcat egories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD re quires visual reasoning, combining both physical knowledge andvideocontenttodetermineobjectabnormality. We bench mark state-of-the-art anomaly detection methods under three settings: unsupervisedAD,weakly-supervised AD,and video understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.

会议录编者/会议主办者CVPR2025
关键词Anomaly Detection
会议名称CVPR2025
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503721
专题信息科学与技术学院_硕士生
创意与艺术学院_PI研究组(P)_武颖娜组
共同第一作者Xiaonan Huang; Wu YN(武颖娜)
通讯作者Xu XH(徐晓豪); Wu YN(武颖娜)
作者单位
1.上海科技大学
2.密歇根大学,安娜堡分校
3.Monash University
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Li WJ,Gu Y,Chen XT,et al. Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection[C]//CVPR2025,2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li WJ(李文峤)]的文章
[Gu Y(谷峣)]的文章
[Chen XT(陈鑫涛)]的文章
百度学术
百度学术中相似的文章
[Li WJ(李文峤)]的文章
[Gu Y(谷峣)]的文章
[Chen XT(陈鑫涛)]的文章
必应学术
必应学术中相似的文章
[Li WJ(李文峤)]的文章
[Gu Y(谷峣)]的文章
[Chen XT(陈鑫涛)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。