ShanghaiTech University Knowledge Management System
Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection | |
2025-06-10 | |
会议录名称 | 2025 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
发表状态 | 正式接收 |
摘要 | Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned phys ical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously repli cate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using arealrobotarmandmotor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset in cludes morethan6400videosacross22real-worldobjectcat egories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD re quires visual reasoning, combining both physical knowledge andvideocontenttodetermineobjectabnormality. We bench mark state-of-the-art anomaly detection methods under three settings: unsupervisedAD,weakly-supervised AD,and video understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/. |
会议录编者/会议主办者 | CVPR2025 |
关键词 | Anomaly Detection |
会议名称 | CVPR2025 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503721 |
专题 | 信息科学与技术学院_硕士生 创意与艺术学院_PI研究组(P)_武颖娜组 |
共同第一作者 | Xiaonan Huang; Wu YN(武颖娜) |
通讯作者 | Xu XH(徐晓豪); Wu YN(武颖娜) |
作者单位 | 1.上海科技大学 2.密歇根大学,安娜堡分校 3.Monash University |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Li WJ,Gu Y,Chen XT,et al. Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection[C]//CVPR2025,2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。