ShanghaiTech University Knowledge Management System
Graph-guided and Deep Feature Fusion Hashing for Unsupervised Cross-modal Retrieval | |
2025 | |
会议录名称 | INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE INNOVATIONS (IS-AII 2025)
![]() |
发表状态 | 正式接收 |
摘要 | Unsupervised cross-modal hashing techniques have gained significant attention in large-scale multimedia retrieval tasks due to their ability to maintain high retrieval efficiency and minimal storage costs without requiring labeled data. However, despite the substantial progress made by existing methods, two primary issues persist: (1) Insufficient structural information in the similarity matrices and the reliance on fixed weight coefficients for generating inter-modal matrices, resulting in limited generalization capabilities; (2) Inadequate constraint capabilities in the feature fusion process, leading to suboptimal information integration. To overcome these limitations, this paper proposes a novel unsupervised cross-modal hashing method based on graph-guided deep feature fusion, named GDFH. Specifically, an adaptive similarity matrix construction module is introduced, which dynamically constructs similarity matrices through nonlinear transformations and learnable adaptive weight parameters to capture latent modal associations and semantic relationships. To further enhance feature representation, GDFH incorporates a heterogeneous graph neural network (HGNN) aimed at effectively capturing fine-grained semantic relationships between features. This approach allows for the explicit creation of more representative joint-modal features, which collaborate with existing features to facilitate the learning of hash functions. Experimental results on the MIRFlickr-25K and NUS-WIDE public datasets demonstrate that GDFH outperforms baseline methods, delivering superior performance. Specifically, for the text-to-image retrieval subtask on the MIRFlickr-25K dataset with a 64-bit hash code length, the retrieval accuracy improved by 2.81%. |
关键词 | Cross-modal Retrieval Unsupervised Cross-modal Hashing Similarity Matrix Heterogeneous Graph Neural Network |
收录类别 | EI |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503626 |
专题 | 信息科学与技术学院_特聘教授组_王营冠组 信息科学与技术学院_硕士生 |
通讯作者 | Yingguan Wang |
作者单位 | 1.Shanghai Institute of Microsystems and Information Technology, Shanghai, China; ShanghaiTech University, Shanghai 2.ShanghaiTech University, Shanghai, China 3.University of Chinese Academy of Sciences, Beijing, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Ning Kang,Li Ji,Xiaowei Feng,et al. Graph-guided and Deep Feature Fusion Hashing for Unsupervised Cross-modal Retrieval[C],2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ning Kang]的文章 |
[Li Ji]的文章 |
[Xiaowei Feng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ning Kang]的文章 |
[Li Ji]的文章 |
[Xiaowei Feng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ning Kang]的文章 |
[Li Ji]的文章 |
[Xiaowei Feng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。