| |||||||
ShanghaiTech University Knowledge Management System
TUMSyn: A Text-Guided Generalist Model for Customized Multimodal MR Image Synthesis | |
2025 | |
会议录名称 | FOUNDATION MODELS FOR GENERAL MEDICAL AI, MEDAGI 2024 (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15184 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73471-7_13 |
摘要 | Multimodal magnetic resonance (MR) imaging has revolutionized our understanding of the human brain. However, various limitations in clinical scanning hinder the data acquisition process. Current medical image synthesis techniques, often designed for specific tasks or modalities, exhibit diminished performance when confronted with heterogeneous-source MRI data. Here we introduce a Text-guided Universal MR image Synthesis (TUMSyn) generalist model to generate text-specified multimodal brain MRI sequences from any real-acquired sequences. By leveraging demographic data and imaging parameters as text prompts, TUMSyn achieves diverse cross-sequence synthesis tasks using a unified model. To enhance the efficacy of text features in steering synthesis, we pre-train a text encoder by using contrastive learning strategy to align and fuse image and text semantic information. Developed and evaluated on a multi-center dataset of over 20K brain MR image-text pairs with 7 structural MR contrasts, spanning almost entire age spectrum and various physical conditions, TUMSyn demonstrates comparable or exceeding performance compared to task-specific methods in both supervised and zero-shot settings, and the synthesized images exhibit accurate anatomical morphology suitable for various downstream clinical-related tasks. In summary, by incorporating text metadata into the image synthesis, the accuracy, versatility, and generalizability position TUMSyn as a powerful augmentative tool for conventional MRI systems, offering rapid and cost-effective acquisition of multi-sequence MR images for clinical and research applications. |
关键词 | Foundation Model Multimodal MRI MRI Synthesis Super-resolution |
会议名称 | 2nd International Workshop on Foundation Models for General Medical AI |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | null,Marrakesh,MOROCCO |
会议日期 | OCT 06, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","U23A20295","62250710165","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] ; Science and Technology special fund of Hainan Province[KJRC2023B06] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001426955400013 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503603 |
专题 | 生物医学工程学院 生命科学与技术学院_本科生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_王乾组 |
通讯作者 | Liu, Qian; Shen, Dinggang |
作者单位 | 1.Hainan Univ, Sch Biomed Engn, Haikou 570228, Hainan, Peoples R China 2.Hainan Univ, State Key Lab Digital Med Engn, Haikou 570228, Hainan, Peoples R China 3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 4.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai 201210, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China 6.Hainan Univ, Hlth Inst 1, Key Lab Biomed Engn Hainan Prov, Haikou 570228, Hainan, Peoples R China |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang, Yulin,Xiong, Honglin,Xie, Yi,et al. TUMSyn: A Text-Guided Generalist Model for Customized Multimodal MR Image Synthesis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2025. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。