消息
×
loading..
TUMSyn: A Text-Guided Generalist Model for Customized Multimodal MR Image Synthesis
2025
会议录名称FOUNDATION MODELS FOR GENERAL MEDICAL AI, MEDAGI 2024 (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15184
发表状态已发表
DOI10.1007/978-3-031-73471-7_13
摘要Multimodal magnetic resonance (MR) imaging has revolutionized our understanding of the human brain. However, various limitations in clinical scanning hinder the data acquisition process. Current medical image synthesis techniques, often designed for specific tasks or modalities, exhibit diminished performance when confronted with heterogeneous-source MRI data. Here we introduce a Text-guided Universal MR image Synthesis (TUMSyn) generalist model to generate text-specified multimodal brain MRI sequences from any real-acquired sequences. By leveraging demographic data and imaging parameters as text prompts, TUMSyn achieves diverse cross-sequence synthesis tasks using a unified model. To enhance the efficacy of text features in steering synthesis, we pre-train a text encoder by using contrastive learning strategy to align and fuse image and text semantic information. Developed and evaluated on a multi-center dataset of over 20K brain MR image-text pairs with 7 structural MR contrasts, spanning almost entire age spectrum and various physical conditions, TUMSyn demonstrates comparable or exceeding performance compared to task-specific methods in both supervised and zero-shot settings, and the synthesized images exhibit accurate anatomical morphology suitable for various downstream clinical-related tasks. In summary, by incorporating text metadata into the image synthesis, the accuracy, versatility, and generalizability position TUMSyn as a powerful augmentative tool for conventional MRI systems, offering rapid and cost-effective acquisition of multi-sequence MR images for clinical and research applications.
关键词Foundation Model Multimodal MRI MRI Synthesis Super-resolution
会议名称2nd International Workshop on Foundation Models for General Medical AI
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点null,Marrakesh,MOROCCO
会议日期OCT 06, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62131015","U23A20295","62250710165","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] ; Science and Technology special fund of Hainan Province[KJRC2023B06]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001426955400013
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503603
专题生物医学工程学院
生命科学与技术学院_本科生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_王乾组
通讯作者Liu, Qian; Shen, Dinggang
作者单位
1.Hainan Univ, Sch Biomed Engn, Haikou 570228, Hainan, Peoples R China
2.Hainan Univ, State Key Lab Digital Med Engn, Haikou 570228, Hainan, Peoples R China
3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
4.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai 201210, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
6.Hainan Univ, Hlth Inst 1, Key Lab Biomed Engn Hainan Prov, Haikou 570228, Hainan, Peoples R China
第一作者单位生物医学工程学院;  上海科技大学
通讯作者单位生物医学工程学院;  上海科技大学
推荐引用方式
GB/T 7714
Wang, Yulin,Xiong, Honglin,Xie, Yi,et al. TUMSyn: A Text-Guided Generalist Model for Customized Multimodal MR Image Synthesis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2025.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Xie, Yi]的文章
百度学术
百度学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Xie, Yi]的文章
必应学术
必应学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Xie, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。