Homomorphic sensing
2019
会议录名称36TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, ICML 2019
卷号2019-June
页码11034-11043
发表状态已发表
DOI---
摘要

A recent line of research termed unlabeled sensing and shuffled linear regression has been exploring under great generality the recovery of signals from subsampled and permuted measurements; a challenging problem in diverse fields of data science and machine learning. In this paper we introduce an abstraction of this problem which we call homomorphic sensing. Given a linear subspace and a finite set of linear transformations we develop an algebraic theory which establishes conditions guaranteeing that points in the subspace are uniquely determined from their homomorphic image under some transformation in the set. As a special case, we recover known conditions for unlabeled sensing, as well as new results and extensions. On the algorithmic level we exhibit two dynamic programming based algorithms, which to the best of our knowledge are the first working solutions for the unlabeled sensing problem for small dimensions. One of them, additionally based on branch-and-bound, when applied to image registration under affine transformations, performs on par with or outperforms state-of-the-art methods on benchmark datasets.
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.

会议地点Long Beach, CA, United states
收录类别EI ; CPCI ; CPCI-S
语种英语
出版者International Machine Learning Society (IMLS)
EI入藏号20200408068215
EI主题词Dynamic programming ; Linear transformations ; Machine learning ; Signal reconstruction
EI分类号Information Theory and Signal Processing:716.1 ; Mathematical Transformations:921.3 ; Optimization Techniques:921.5
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/50003
专题信息科学与技术学院_PI研究组_Manolis Tsakiris组
信息科学与技术学院_硕士生
通讯作者Tsakiris, Manolis C.
作者单位
School of Information Science and Technology, Shanghai Tech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Tsakiris, Manolis C.,Peng, Liangzu. Homomorphic sensing[C]:International Machine Learning Society (IMLS),2019:11034-11043.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tsakiris, Manolis C.]的文章
[Peng, Liangzu]的文章
百度学术
百度学术中相似的文章
[Tsakiris, Manolis C.]的文章
[Peng, Liangzu]的文章
必应学术
必应学术中相似的文章
[Tsakiris, Manolis C.]的文章
[Peng, Liangzu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。